Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-x64cq Total loading time: 0.449 Render date: 2022-05-18T13:22:27.928Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

Optimal turning gait of a six-legged robot using a GA-fuzzy approach

Published online by Cambridge University Press:  31 October 2000

DILIP KUMAR PRATIHAR
Affiliation:
Kanpur Genetic Algorithms Laboratory (KanGAL), Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, Kanpur, Pin 208 016, India
KALYANMOY DEB
Affiliation:
Kanpur Genetic Algorithms Laboratory (KanGAL), Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, Kanpur, Pin 208 016, India
AMITABHA GHOSH
Affiliation:
Kanpur Genetic Algorithms Laboratory (KanGAL), Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, Kanpur, Pin 208 016, India

Abstract

This paper describes a new method for generating the turning-gait of a six-legged robot using a combined genetic algorithm (GA)-Fuzzy approach. The main drawback of the traditional methods of gait generation is their high computational load. Thus, there is still a need for the development of a computationally tractable algorithm that can be implemented online to generate stable gait of a multilegged robot. In the proposed genetic-fuzzy system, the fuzzy logic controllers (FLCs) are used to generate the stable gait of a hexapod and a GA is used to improve the performance of the FLCs. The effectiveness of the proposed algorithm is tested on a number of turning-gait generation problems of a hexapod that involve translation as well as rotation of the vehicle. The hexapod will have to take a sharp circular turn (either clockwise or counter-clockwise) with minimum number of ground legs having the maximum average kinematic margin. Moreover, the stability margin should lie within a certain range to ensure static stability of the vehicle. Each leg of a six-legged robot is controlled by a separate FLC and the performance of the controllers is improved by using a GA. It is to be noted that the actual optimization is done off-line and the hexapod can use these optimized FLCs to navigate in real-world scenarios. As an FLC is computationally less expensive, the proposed algorithm will be faster compared with the traditional methods of gait-generation, which include both graphical as well as analytical methods. The GA-tuned FLCs are found to perform better than the author-defined FLCs.

Type
Research Article
Copyright
2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
17
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optimal turning gait of a six-legged robot using a GA-fuzzy approach
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Optimal turning gait of a six-legged robot using a GA-fuzzy approach
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Optimal turning gait of a six-legged robot using a GA-fuzzy approach
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *