Skip to main content Accessibility help
×
×
Home

An affordance-based approach for generating user-specific design specifications

  • Phillip Cormier (a1) and Kemper Lewis (a2)
Abstract

When developing an artifact, designers must first understand the problem. This includes the benefits that the artifact must deliver and the user variation that is present. Each user has a unique set of human factors, preferences, personal knowledge, and solution constraints that could potentially influence the characteristics of the artifact. Currently, there is little work supporting the process of how to formally generate user-specific design specifications, resulting in ad hoc or a priori decisions when generating design specifications. Further, because most design processes generate design specifications manually, the number of design specifications is not typically addressed at the user level. This research presents an affordance-based approach for use in the early stages of design to help designers establish user-specific design specifications. This information can then be used in the creation of a system or set of systems that meets the demands of both the user(s) and the organization that is developing the artifact. An affordance-based approach is leveraged because it maintains the relational field of view among the user, existing artifacts, and the artifact(s) being designed. Once individual design specifications are generated, designers can use this information in later stages of the design process.

Copyright
Corresponding author
Reprint requests to: Phillip Cormier, Design of Open Engineering Systems Laboratory, University at Buffalo–SUNY, Buffalo, NY 14260, USA. E-mail: phillipcormier@gmail.com
References
Hide All
Cormier, P. (2014). An affordance-based approach to evaluating consumer variation. PhD thesis. Proquest Database (1625970657).
Cormier, P., & Lewis, K. (2010). Design method selection to satisfy consumer variation: a meta-design approach. Proc. ASME Int. Design Engineering Technical Conf., Design Theory and Methodology Conf., Paper No. DETC2010-28901, Montreal.
Cormier, P., Olewnik, A., & Lewis, K. (2014). Towards a formalization of affordance modeling for engineering design. Research in Engineering Design 25(3), 259277.
Cowper, P. (2008, July10). The dearth of innovation. Marketing Week.
Ferguson, S., Siddiqi, A., Lewis, K., & de Weck, O. (2007). Flexible and reconfigurable systems: nomenclature and review. Proc. ASME Int. Design Engineering Technical Conf., Design Automation Conf., Paper No. DETC2007-35745, Las Vegas, NV.
Galvao, A., & Sato, K. (2005). Affordances in product architecture: linking technical functions and user tasks. Proc. ASME Int. Design Engineering Technical Conf., Design Automation Conf., Paper No. DETC2005-84525, Long Beach, CA.
Garneau, C., & Parkinson, M. (2009 a). Optimization of tool handle shape for a target user population. Proc. ASME Int. Design Engineering Technical Conf., Design Automation Conf., Paper No. DETC2009-87444, San Diego, CA.
Garneau, C., & Parkinson, M. (2009 b). Including preference in anthropometry-driven models for design. Journal of Mechanical Design 131(10), 101006.
Gilmore, J., & Pine, J. (1997). The four faces of mass customization. Harvard Business Review 75(1), 91101.
Gordon, C., Churchill, T., Clauser, C., Bradtmiller, B., McConville, J., Tebbetts, I., & Walker, R. (1989). 1988 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics. Final Report (NATICK/TR-89/027). Natick, MA: United States Army Natick Research, Development and Engineering Center.
Hauser, J., & Clausing, D. (1988). The House of Quality. Harvard Business Review 66(3), 6374.
Hernandez, G., Allen, J.K., & Mistree, F. (2002). Design of hierarchic platforms for customizable products. Proc. ASME Int. Design Engineering Technical Conf., Design Automation Conf., Paper No. DETC2002-34095, Montreal.
Maier, J., & Fadel, G. (2001 a). Affordance: the fundamental concept in engineering design. Proc. ASME Int. Design Engineering Technical Conf., Design Theory and Methodology Conf., Paper No. DETC2001-21700, Pittsburgh, PA.
Maier, J., & Fadel, G.M. (2001 b). Strategic decisions in the early stages of product family design. Proc. ASME Int. Design Engineering Technical Conf., Design for Manufacturing Conf., Paper No. DETC2001-21200, Pittsburgh, PA.
Maier, J., & Fadel, G. (2003). Affordance-based methods for design. Proc. ASME Int. Design Engineering Technical Conf., Design Theory and Methodology Conf., Paper No. DETC2003-48673, Chicago.
Maier, J., & Fadel, G. (2009). Affordance-based design methods for innovative design, redesign, and reverse engineering. Research in Engineering Design 20(4), 225239.
Marion, T., Freyer, M., Simpson, T., & Wysk, R. (2006). Design for mass customization in the early stages of product development. Proc. ASME Int. Design Engineering Technical Conf.—Design Automation Conf., Paper No. DETC2006-99641, Philadelphia, PA.
Meyer, M., & Lehnerd, A. (1997). The Power of Product Platforms: Building Value and Cost Leadership. New York: Free Press.
Null, R., & Cherry, K. (1996). Universal Design: Creative Solutions for ADA Compliance. Belmont, CA: Professional Publications.
Phadke, M. (1989). Quality Engineering Using Robust Design. Englewood Cliffs, NJ: Prentice–Hall.
Pine, J. (1993). Mass Customization—The New Frontier in Business Competition. Cambridge, MA: Harvard Business School Press.
Saleh, J.H., Mark, G.T., & Jordan, N.C. (2009). Flexibility: a multi-disciplinary literature review and a research agenda for designing flexible systems. Journal of Engineering Design 20(3), 307323.
Siddiqi, A., de Weck, O., & Iagnemma, K. (2006). Reconfigurability in planetary surface vehicles: modeling approaches and case study. Journal of the British Interplanetary Society, 59(12), 450460.
Simpson, T.W. (2004). Product platform design and customization: status and promise. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 18(1), 320.
Simpson, T.W., Maier, J.R.A., & Mistree, F. (2001). Product platform design: method and application. Research in Engineering Design 13(1), 222.
Ulrich, K., & Eppinger, S. (2012). Product Design and Development, 5th ed.New York: McGraw–Hill.
Williams, C., Allen, J., Rosen, D., & Mistree, F. (2004). Designing platforms for customizable products in markets with non-uniform demand. Proc. ASME Design Engineering. Technical Conf., Design Theory and Methodology Conf., Paper No. DETC2004-57469, Salt Lake City, UT.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

AI EDAM
  • ISSN: 0890-0604
  • EISSN: 1469-1760
  • URL: /core/journals/ai-edam
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed