Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T05:37:47.541Z Has data issue: false hasContentIssue false

An analysis of functional modeling approaches across disciplines

Published online by Cambridge University Press:  24 July 2013

Boris Eisenbart*
Affiliation:
Engineering Design and Methodology Group, Université du Luxembourg, Luxembourg
Kilian Gericke
Affiliation:
Engineering Design and Methodology Group, Université du Luxembourg, Luxembourg
Luciënne Blessing
Affiliation:
Engineering Design and Methodology Group, Université du Luxembourg, Luxembourg
*
Reprint requests to: Boris Eisenbart, Engineering Design and Methodology Group, Université du Luxembourg, 6 rue Richard Coudenhove Kalergi, L-1359, Luxembourg. E-mail: Boris.Eisenbart@uni.lu

Abstract

Authors across disciplines propose functional modeling as part of systematic design approaches, in order to support and guide designers during conceptual design. The presented research aims at contributing to a better understanding of the diverse functional modeling approaches proposed across disciplines. The article presents a literature review of 41 modeling approaches from a variety of disciplines. The analysis focuses on what is addressed by functional modeling at which point in the proposed conceptual design process (i.e., in which sequence). The gained insights lead to the identification of specific needs and opportunities, which could support the development of an integrated functional modeling approach. The findings suggest that there is no such shared sequence for functional modeling across disciplines. However, a shared functional modeling perspective has been identified across all reviewed disciplines, which could serve as a common basis for the development of an integrated functional modeling approach.

Type
Response Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, S., & Wallace, K. (2003). Evaluating a functional basis. Proc. ASME Design Engineering Technical Conf. Computers and Information in Engineering Conf., Chicago, September 26.CrossRefGoogle Scholar
Albers, A., Sadowski, E., & Braun, A. (2010). Funktionsorientierte Produktentwicklung in frühen Phasen von Entwicklungsprozessen. Proc. KT 2010, 8. Gemeinsames Kolloquium Konstruktionstechnik, Magdeburg, Germany.Google Scholar
Alink, T. (2010). Bedeutung, Darstellung und Formulierung von Funktionen für das Lösen von Gestaltungsproblemen mit dem C&C-Ansatz. PhD Thesis. Karlsruhe Institute of Technology, Institut für Produktentwicklung.Google Scholar
Alink, T., Eckert, C., Ruckpaul, A., & Albers, A. (2010). Different function breakdowns for one existing product: experimental results. Proc. Design Computing and Cognition, DCC, pp. 405424, Stuttgart, Germany, July 12–14.Google Scholar
Andreasen, M.M. (1992). The theory of domains. In Understanding Function and Function-to-Form Evolution (Ullman, D.G., Blessing, L., & Wallace, K., Eds.). Cambridge: Cambridge University Press.Google Scholar
Bleck, A., Goedecke, M., Huss, A., & Waldschmidt, K. (1996). Praktikum des Modernen VLSI-Entwurfs. Stuttgart: B.G. Teubner Verlag.CrossRefGoogle Scholar
Blessing, L. (1994). A process-based approach to computer-supported engineering design. PhD Thesis. University of Twente.Google Scholar
Blessing, L. (1997). Applying Systematic Design. The Flight Refuelling Probe Project, CUED/C-EDC/TR 48. Cambridge: University of Cambridge, Engineering Design Centre.Google Scholar
Blessing, L., & Upton, N. (1997). A methodology for preliminary design of mechanical aircraft systems. Proc. AIAA/SAE World Aviation Congr., Paper No. 975537, Anaheim, CA, October 13.CrossRefGoogle Scholar
Brezet, H., Diehl, J.C., & Silvester, S. (2001). From eco-design of products to sustainable systems design: Delft's experiences. Proc. EcoDesign 2001: 2nd Int. Symp. Environmentally Conscious Design and Inverse Manufacturing, pp. 605612, December 11–15.Google Scholar
Bullinger, H.-J., Fähnrich, K.-P., & Meiren, T. (2003). Service engineering: methodical development of new service products. International Journal of Production Economics 85, 275287.CrossRefGoogle Scholar
Buur, J. (1990). A theoretical approach to mechatronics design. PhD Thesis. Technical University of Denmark, Lyngby, Institute for Engineering Design.Google Scholar
Carrara, M., Garbacz, P., & Vermaas, P. (2011). If engineering function is a family resemblance concept: assessing three formalization strategies. Applied Ontology 6(2), 141163.CrossRefGoogle Scholar
Chakrabarti, A. (1992). Functional reasoning in design: function as a common representation for design problem solving. In Understanding Function and Function-to-Form Evolution (Ullman, D.G., Blessing, L., & Wallace, K., Eds.). Cambridge: Cambridge University Press.Google Scholar
Chakrabarti, A., & Bligh, T. P. (2001). A scheme for functional reasoning in conceptual design. Design Studies 22(6), 493517.CrossRefGoogle Scholar
Chandrasekaran, B., & Josephson, J.R. (2000). Function in device representation. Engineering With Computers 16, 162177.CrossRefGoogle Scholar
Crilly, N. (2010). The role that artefacts play: technical, social and aesthetical functions. Design Studies 31, 311344.CrossRefGoogle Scholar
Cross, N. (2008). Engineering Design Methods: Strategies for Product Design. Chichester: Wiley.Google Scholar
Dewey, A. (2000). Digital and analogue electronic design automation. In The Electrical Engineering Handbook (Dorf, R.C., Ed.). Boca Raton, FL: CRC Press.Google Scholar
Eckert, C. (2013). That which is not form: the practical challenges in using functional concepts in design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27(3), 217232 [this issue].CrossRefGoogle Scholar
Eckert, C., Alink, T., & Albers, A. (2010). Issue-driven analysis of an existing product at different levels of abstraction. Proc. 11th Int. Design Conf. Dubrovnik, Croatia: Design Society.Google Scholar
Eder, W.E. (2008). Aspects of analysis and synthesis in design engineering. Proc. Canadian Design Engineering Conf., CDEN, Halifax, July 27–29.Google Scholar
Eisenbart, B., Blessing, L., & Gericke, K. (2012). Functional modeling Perspectives Across Disciplines. A Literature Review. Proc. 12th Int. Design Conf. Dubrovnik, Croatia: Design Society.Google Scholar
Eisenbart, B., Gericke, K., & Blessing, L. (2011). A framework for comparing design modeling approaches across disciplines. Proc. 18th Int. Conf. Engineering Design (ICED'11). Lyngby/Copenhagen: Design Society.Google Scholar
Eisenbart, B., Qureshi, A.J., Gericke, K., & Blessing, L. (2013). Integrating different functional modeling perspectives. Proc. ICoRD'13: Lecture Notes in Mechanical Engineering, pp. 8597. New Delhi: Springer.Google Scholar
Erden, M.S., Komoto, H., van Beek, T.J., D'Amelio, V., Echavarria, E., & Tomiyama, T. (2008). A review of function modeling: approaches and applications. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 22, 147169.CrossRefGoogle Scholar
Fähnrich, K.-P., & Meiren, T. (2007). Service engineering: state of the art and future trends. Advances in Service Innovations 1, 316.CrossRefGoogle Scholar
Far, B.H., & Elamy, H. (2005). Functional reasoning theories: problems and perspectives. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 19, 7588.CrossRefGoogle Scholar
Goel, A.K. (2013). One 30-year case study and 15 principles: implications of an artificial intelligence methodology for functional modeling. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27(3), 203215 [this issue].CrossRefGoogle Scholar
Hubka, V., & Eder, W. (1988). Theory of Technical Systems: A Total Concept Theory for Engineering Design. Berlin: Springer–Verlag.CrossRefGoogle Scholar
IABG. (2006). V-Model XT. Accessed at http://www.v-modell.iabg.de/Google Scholar
Kleinsmann, M. (2008). Barriers and enablers for creating shared understanding in co-design projects. Design Studies 29(4), 369386.CrossRefGoogle Scholar
Kroll, P., & Kruchten, P. (2003). The Rational Unified Process Made Easy: A Practitioner's Guide to the RUP. Boston: Addison–Wesley.Google Scholar
Maussang-Detaille, N. (2008). Méthologie de Conception pour les Systèmes Produits-Services. PhD Thesis. Université de Grenoble.Google Scholar
Müller, P., Schmidt-Kretschmer, M., & Blessing, L. (2007). Function allocation in product-service-systems: are there analogies between PSS and mechatronics?Proc. Applied Engineering Design Science—AEDS Workshop (Vanek, V., & Hosnedl, S., Eds.), pp. 4756. Pilsen, Czech Republic: Design Society.Google Scholar
Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.-H. (2008). Engineering Design: A Systematic Approach. Berlin: Springer–Verlag.Google Scholar
Roozenburg, N. F. M., & Eekels, J. (1995). Product Design: Fundamentals and Methods. Chichester: Wiley.Google Scholar
Sakao, T., & Shimomura, Y. (2007). Service engineering: a novel engineering discipline for producers to increase value combining service and product. Journal of Cleaner Production 15, 590604.CrossRefGoogle Scholar
Salminen, V., & Verho, A. J. (1989). Multi-disciplinary design problem in mechatronics and some suggestions to its methodical solution in conceptual design phase. Proc. 6th Int. Conf. Engineering Design–ICED.Google Scholar
Scheffer, L., Lavagno, L., & Martin, G. (2006). EDA for Implementation, Circuit Design, and Process Technology. Boca Raton, FL: CRC Press.Google Scholar
Schwaber, K. (2007). Agile Project Management With Scrum. Microsoft Press.Google Scholar
Spath, D., & Demuss, L. (2006). Entwicklung Hybrider Produkte: Gestaltung Materieller und Immaterieller Leistungsbündel. In Service Engineering—Entwicklung und Gestaltung Innovativer Dienstleistungen (Bullinger, H.-J., & Scheer, W.-A., Eds.), pp. 463502. Berlin: Springer.Google Scholar
Stone, R.B., & Wood, K. (2000). Development of a functional basis for design. Journal of Mechanical Design 122, 359370.CrossRefGoogle Scholar
Tan, A.R., McAloone, T.C., & Gall, C. (2007). Product/service-system development: an explorative case study in a manufacturing company. Proc.16th Int. Conf. Engineering Design–ICED, Paris, August 28–31.Google Scholar
Tjalve, E. (1978). Systematic Design of Industrial Products. Technical University of Denmark, Lyngby, Institute for Product Development.Google Scholar
Ullman, D.G., Blessing, L., & Wallace, K. (Eds) (1992). Understanding Function and Function-to-Form Evolution, Workshop Report CUED/C-EDC/TR 12. Cambridge: Cambridge University Press.Google Scholar
Ulrich, K., & Eppinger, S.D. (2008). Product Design and Development. Boston: McGraw–Hill.Google Scholar
Umeda, Y., & Tomiyama, T. (1997). Functional reasoning in design. IEEE Expert 12(2), 4248.CrossRefGoogle Scholar
Valkenburg, R.C. (2000). The reflective practice in product design teams. PhD Thesis. Delft University of Technology.Google Scholar
van Eck, D. (2010). On the conversion of functional models: bridging differences between functional taxonomies in the modeling of user actions. Research in Engineering Design 21, 99111.CrossRefGoogle Scholar
Verein Deutscher Ingenieure. (1993). Systematic Approach for the Design of Technical Systems and Products. VDI 2221. Düsseldorf: Verein Deutscher Ingenieure.Google Scholar
Verein Deutscher Ingenieure. (2004). Design Methodology for Mechatronic Systems. VDI 2206. Düsseldorf: Verein Deutscher Ingenieure.Google Scholar
Vermaas, P. (2011). Accepting ambiguity of engineering functional descriptions. Proc. 18th Int. Conf. Engineering Design, pp. 98107. Lyngby/Copenhagen: Design Society.Google Scholar
Vermaas, P. (2013). The coexistence of engineering meanings of function: four responses and their methodological implications. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27(3), 191202 [this issue].CrossRefGoogle Scholar
Watanabe, K., Mikoshiba, S., Tateyama, T., Shimomura, Y., & Kimita, K. (2011). Service design methodology for cooperative services. Proc. ASME 2011 Int. Design Engineering Technical Conf. Computer and Information in Engineering Conf. IDETC/CIE 2011, Washington, DC, August 28–31.CrossRefGoogle Scholar