Skip to main content Accessibility help

Assessment of uncertainty and confidence in building design exploration

  • Roya Rezaee (a1), Jason Brown (a1), Godfried Augenbroe (a1) and Jinsol Kim (a1)


Performance assessment at early stages of buildings design is complicated by an inherent lack of information on the design and the uncertainty in how a building design may evolve to a final design. This pilot study reports on an initial quantification of such uncertainty associated with building energy performance and develops a method for informing decision makers of the risks in early design decisions under this uncertainty. Two case studies of building design decision situations under this uncertainty are explored along with using two different energy modeling tools: a reduced-order model and a high-order model. The intended contribution is to identify if a decision can be made with confidence in early design given a high level of uncertainty in the evolution of a design and what models can support decisions of this sort. Integration of the proposed decision support approach with a computer-aided design model is shown as well.


Corresponding author

Reprint requests to: Roya Rezaee, High Performance Building, School of Architecture, Georgia Institute of Technology, 247 4th Street, NM Suite 351, Atlanta, GA 30332-0155, USA; E-mail:


Hide All
Attia, S., Beltrán, L., De Herde, A., & Hensen, J. (2009). “Architect friendly”: A comparison of ten different building performance simulation tools. Proc. 11th Int. Building Performance Simulation Association Conf., Glasgow, Scotland, July 27–30.
Augenbroe, G. (1992). Integrated building performance evaluation in the early design stages. Building and Environment 27(2), 149161. doi:10.1016/0360-1323(92)90019-l
Augenbroe, G. (2011). The role of simulation in performance based building. In Building Performance Simulation for Design and Operation (Jensen, J., & Lambert, R., Eds.). Abingdon: Spon Press.
Chong, Y.T., Chen, C.-H., & Leong, K.F. (2009). A heuristic-based approach to conceptual design. Research in Engineering Design 20(2), 97116.
Crawley, D.B., Lawrie, L.K., Winkelmann, F.C., & Pedersen, C.O. (2001). EnergyPlus: new capabilities in a whole-building energy simulation program. Proc. Int. Building Performance Simulation Conf., Rio de Janeiro, Brazil, August 13–15.
de Wit, M.S. (2001). Uncertainty in Predictions of Thermal Comfort in Buildings B2—Uncertainty in Predictions of Thermal Comfort in Buildings. Delft: Technische Universiteit Delft.
de Wit, M.S. (2003). Uncertainty in building simulation. In Advanced Building Simulation, p. 5. New York: Spon Press.
de Wit, S., & Augenbroe, G. (2002). Analysis of uncertainty in building design evaluations and its implications. Energy and Buildings 34(9), 951958. doi:10.1016/s0378-7788(02)00070-1
DOE. (2013). EnergyPlus Energy Simulation Software.
Domeshek, E.A., Herndon, M.F., Bennett, A.W., & Kolodner, J L. (1994). A case-based design aid for conceptual design of aircraft subsystems. Proc. 10th Conf. Artificial Intelligence for Applications, pp. 6369. San Antonio, TX: IEEE.
EIA. (2006). 2003 Commercial Buildings Energy Consumption Survey (CBECS). Accessed at
Grew, B., Boussabaine, A.H., Kumar, B., & Topping, B.H.V. (1999). The use of rules of thumb and simple calculations for the checking of computer simulations of building structures. Proc. Computing Developments in Civil and Structural Engineering, pp. 912. Edinburgh: Civil-Comp Press.
Hazelrigg, G.A. (2010). Fundamentals of decision making for engineering design and systems engineering. Unpublished manuscript.
Hensen, J., & Augenbroe, G. (2004). Performance simulation for better building design. Energy and Buildings 36(8), 735736. doi:10.1016/j.enbuild.2004.06.004
Hensen, J.L.M., & Lamberts, R. (2011). Introduction to building performance simulation. In Building Performance Simulation for Design and Operation. Abingdon: Spon Press.
Hopfe, C.J., & Hensen, J.L. (2011). Uncertainty analysis in building performance simulation for design support. Energy and Buildings 43(10), 27982805.
Hopfe, C.J., Struck, C., Harputlugil, G.U., Hensen, J., & de Wilde, P. (2005). Exploration of the use of building performance simulation for conceptual design. Proc. IBPSA-NVL Conf. Delft: Technische Universiteit Delft.
ISO. (2008). ISO 13790:2008 Energy Performance of Buildings—Calculation of Energy Use for Space Heating and Cooling. Geneva: Author.
Kim, J., Augenbroe, G., & Suh, H.S. (2013). Comparative study of the LEED and ISO-CEN building energy performance rating methods. Proc. Int. Building Performance Simulation Association Conf., Chambéry, France, August 26–28.
Lee, B., Paredis, C., & Augenbroe, G. (2013). Towards better prediction of building performance: a workbench to analyze uncertainty in building simulation. Proc. Int. Building Performance Simulation Association Conf., Chambéry, France, August 26–28, 2013.
Lee, S.H., Zhao, F., & Augenbroe, G. (2011). The use of normative energy calculation beyond building performance rating systems. Proc. 12th Int. Building Performance Simulation Association Conf., Sydney, November 14–16.
Malkawi, A., & Augenbroe, G. (2003). Advanced Building Simulation. New York: Spon Press.
Okudan, G.E., & Tauhid, S. (2008). Concept selection methods—a literature review from 1980 to 2008. International Journal of Design Engineering 1(3), 243277.
PHX. (2013). PHX ModelCenter: Desktop Trade Studies. Accessed at
Rezaee, R., Brown, J., Augenbroe, G., & Kim, J. (2014 a). Building energy performance estimation in early design decisions: quantification of uncertainty and assessment of confidence. Construction Research Congr., pp. 2195–2204, Atlanta, GA, May 19–21.
Rezaee, R., Brown, J., Augenbroe, G., & Kim, J. (2014 b). A new approach to the integration of energy assessment tools in CAD for early stage of design decision-making considering uncertainty. Proc. eWork and eBusiness in Architecture, Engineering and Construction: ECPPM 2014, p. 367. London: Taylor & Francis.
Sanguinetti, P., Eastman, C., & Augenbroe, G. (2009). Courthouse energy evaluation: BIM and simulation model interoperability in concept design. Proc. 11th Int. Building Performance Simulation Association Conf., Glasgow, Scotland, July 27–30.
Struck, C., de Wilde, P.J.C.J., Hopfe, C.J., & Hensen, J.L.M. (2009). An investigation of the option space in conceptual building design for advanced building simulation. Advanced Engineering Informatics 23(4), 386395. doi:10.1016/j.aei.2009.06.004
Struck, C., & Hensen, J. (2007). On supporting design decision in conceptual design addressing specification uncertainties using performance simulation. Proc. 10th Int. Building Performance Simulation Association Conf., pp. 1434–1439. Beijing: Tsinghua University.
Struck, C., Hensen, J., & Kotek, P. (2009). On the application of uncertainty and sensitivity analysis with abstract building performance simulation tools. Journal of Building Physics 33, 527.
Urban, B.J. (2007). The MIT Design Advisor: Simple and Rapid Energy Simulation of Early-Stage Building Designs. Cambridge, MA: MIT Press.
Vandezande, J., Krygiel, E., & Read, P. (2014). Introduction, Autodesk Revit Architecture 2014. Hoboken, NJ: Sybex Essentials.
Zhao, F. (2012). Agent-based modeling of commercial buildings stocks for energy policy and demand response analysis. PhD Thesis. Georgia Instiute of Technology.


Assessment of uncertainty and confidence in building design exploration

  • Roya Rezaee (a1), Jason Brown (a1), Godfried Augenbroe (a1) and Jinsol Kim (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed