Skip to main content Accessibility help

Cellular self-organizing systems: A field-based behavior regulation approach

  • Yan Jin (a1) and Chang Chen (a1)


Multiagent systems have been considered as a potential solution for developing adaptive systems. In this research, a cellular self-organizing (CSO) approach is proposed for developing such multiagent adaptive systems. The design of CSO systems however is difficult because the global effect emerges from local actions and interactions that are often hard to specify and control. In order to achieve high-level flexible and robustness of CSO systems and retain the capability of specifying desired global effects, we propose a field-based regulative control mechanism, called field-based behavior regulation (FBR). FBR is a real-time, dynamical, distributed mechanism that regulates the emergence process for CSO systems to self-organize and self-reconfigure in complex operation environments. FBR characterizes the task environment in terms of “fields” and extends the system flexibility and robustness without imposing global control over local cells or agents. This paper describes the model of CSO systems and FBR, and demonstrates their effectiveness through simulation-based case studies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cellular self-organizing systems: A field-based behavior regulation approach
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cellular self-organizing systems: A field-based behavior regulation approach
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cellular self-organizing systems: A field-based behavior regulation approach
      Available formats


Corresponding author

Reprint requests to: Yan Jin, Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Avenue, OHE-430, Los Angeles, CA 90089-1453, USA. E-mail:


Hide All
Ashby, W.R. (1958). Requisite variety and its implications for the control of complex systems. Cybernetica 1(2), 8399.
Audesirk, G., Audesirk, T., & Byers, B.E. (2007). Biology: Life on Earth With Physiology, 8th ed.San Francisco, CA: Benjamin Cummings.
Bentley, P.J. (1999). Evolutionary Design by Computers. San Francsico, CA: Morgan Kaufmann.
Bojinov, H., Casal, A., & Hogg, T. (2000). Multiagent control of self-reconfigurable robots. Proc. IEEE ICMAS Int. Conf. Multiagent Systems, 2000, pp. 441–455.
Bongard, J., Zykov, V., & Lipson, H. (2006). Resilient machines through continuous self-modeling. Science 314(5802), 11181121.
Bonnie, R.M., & Malaga, R. (2000). A co-evolutionary approach to strategy design for decision makers in complex negotiation situation. Proc. 33rd Hawaii Int. Conf. System Sciences, p. 1046.
Butler, Z., Kotay, K., Rus, D., & Tomita, K. (2001). Cellular automata for decentralized control of self-reconfigurable robots. Proc. ICRA 2001 Workshop on Modular Robots.
Fan, Z., Seo, K., Hu, J., Rosenberg, R., & Goodman, E.D. (2003). System-level synthesis of MEMS via genetic programming and bond graphs. Proc. 2003 Genetic and Evolutionary Computing Conference, LNCS, Vol. 2724, pp. 2058–2071. Berlin: Springer.
Ferguson, S., & Lewis, K. (2006). Effective development of reconfigurable systems using linear state-feedback control. AIAA Journal 44(4), 868878.
Fogel, L.J., Owens, A.J., & Walsh, M.J. (1996). Artificial Intelligence Through Simulated Evolution. New York: Wiley.
Fukuda, T., & Kawauchi, Y. (1990). Cellular robotic system (CEBOT) as one of the realizations of self-organizing intelligent universal manipulator. Proc. IEEE Int'l Conf. Robotics and Automation'90 (R&A90), pp. 662–667.
Fukuda, T., & Nakagawa, S. (1988). Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems 1(1), 5572.
Gardner, M. (1970). Mathematical games: the fantastic combinations of John Conway's new solitaire game ‘Life.’ Scientific American 223, 120123.
Gell-Mann, M. (1994). The Quark and the Jaguar: Adventures in the Simple and the Complex. San Francisco, CA: Freeman.
Gershenson, C. (2007). Towards a general methodology for designing self-organizing systems. In Complexity, Science and Society (Bogg, J., & Geyer, R., Eds.). Oxford: Radcliffe.
Gershenson, J.K., Prasad, G.J., & Allamneni, S. (1999). Modular product design: a life-cycle view. Journal of Integrated Design and Process Science 3(4), 1326.
Gilpin, K., Kotay, K., Rus, D., & Vasilescu, I. (2008). Miche: modular shape formation by self-disassembly. International Journal of Robotics Research 27, 345372.
Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Boston: Addison–Wesley Longman.
Gu, P., Hashemian, M., Sosale, S., & Rivin, E. (1997). An integrated modular design methodology for life-cycle engineering. CIRP Annals—Manufacturing Technology 46(1), 7174.
Holland, J.H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence. Cambridge, MA: MIT Press.
Jin, Y., Zouein, G.E., & Lu, S.C.-Y. (2010). A synthetic DNA based approach to design of adaptive systems. CIRP Annals—Manufacturing Technology 58(1), 153156.
Kitano, H. (2002). Systems biology: a brief overview. Science 295(5560), 16621664.
Kopetz, H. (1998). Component-based design of large distributed real-time systems. Control Engineering Practice 6(1), 5360.
Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press.
Koza, J.R., Bennett, F.H., Andre, D., & Keane, M.A. (1999). Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Transactions of Evolutionary Computing 1(2), 109128.
Kumar, S., & Bentley, P.J. (2000). Implicit evolvability: an investigation into the evolvability of an embryogeny. Proc. Genetic and Evolutionary Computation Conf, pp. 198204. Las Vegas, NV: Morgan Kaufmann.
Lee, C.-Y., Ma, L., & Antonsson, E.K. (2001). Evolutionary and Adaptive Synthesis Methods: Formal Engineering Design Synthesis, pp. 270320. New York: Cambridge University Press.
Li, M., & Vitanyi, P. (2008). An Introduction to Kolmogorov Complexity and Its Applications, 3rd ed.Berlin: Springer–Verlag.
Lipson, H. (2007). Evolutionary robotics: emergence of communication. Current Biology 17(9), R330R332.
Maher, M.L. (2001). A model of co-evolutionary design. Engineering With Computers 16, 195208.
Martin, M.V., & Ishii, K. (2002). Design for variety: developing standardised and modularized product platform architectures. Research in Engineering Design 13(4), 213235.
Parmee, I.C. (1997). Evolutionary computing for conceptual and detailed design. In Genetic Algorithms in Engineering and Computer Science. New York: Wiley.
Salemi, B., Shen, W.M., & Will, P. (2001). Hormone controlled metamorphic robots. Proc. IEEE Int. Conf. Robotics and Automation, pp. 4194–4200.
Shen, W.M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., & Venkatesh, J. (2006). Multimode locomotion for reconfigurable robots. Autonomous Robots 20(2), 165177.
Shen, W.M., Salemi, B., & Will, P. (2002). Hormone inspired adaptive communication and distributed control for CONRO self-reconfigurable robots. IEEE Transactions on Robotics and Automation 18(5), 700713.
Shen, W.M., Will, P., Galstyan, A., & Chuong, C.M. (2004). Hormone-inspired self-organization and distributed control of robotic swarms. Autonomous Robots 17(1), 93105.
Subramanian, L., & Katz, R.H. (2000). An architecture for building self-configurable systems. Proc. IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC 2000), Boston, August.
Unsal, C., Kilic, H., & Khosla, P. (2001). A modular self-reconfigurable bipartite robotic system: implementation and motion planning. Kluwer Autonomics and Robots 10, 2340.
Vajna, S., & Clement, S. (2002). Autogenetic design theory: an approach to optimise both the design process and the product. Proc. DETC02, ASME 2002 Design Engineering Technical Conf., Paper No. DTEC2002/DAC-34038, Montreal.
Vincent, J.F.V., Bogatyreva, O., & Bogatyrev, N. (2006). Biology doesn't waste energy: that's really smart. Proc. SPIE 6168, pp. 1–9.
von Foerster, H. (1977). Objects: tokens for (eigen-)behaviors. In Hommage a Jean Piaget: Epistemologie Genetique et Equilibration (Inhelder, B., Gracia, R., & Voneche, J., Eds.). Neuchatel, Switzerland: Delachaux et Niestel.
von Neumann, J. (1966). The Theory of Self-Reproducing Automata (Burks, A., Ed.). Urbana, IL: University of Illinois Press.
Watson, J.D., & Crick, F.H.C. (1953). Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964967.
Weisbuch, G. (1991). Complex Systems Dynamics: An Introduction to Automata Networks. Santa Fe Institute Studies in the Science of Complexity: Lecture Notes (Ryckebusch, S., Trans.), Vol. 2. Reading, MA: Addison–Wesley/Addison Wesley Longman.
Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media.
Yim, M., Duff, D.G., & Roufas, K.D. (2000). PolyBot: a modular reconfigurable robot. Proc. ICRA IEEE Int. Conf. Robotics and Automation, pp. 514–520.
Yim, M., Zhang, Y., & Duff, D. (2002). Modular robots. IEEE Spectrum 39(2), 3034.
Yogev, O., & Antonsson, E.K. (2007). A novel synthesis design approach for continuous inhomogeneous structures. Proc. 19th Int. Conf. Design Theory and Methodology (DTM), Paper No. DETC2007/DTM-35662.
Yu, C.H., & Nagpal, R. (2011). A self-adaptive framework for modular robots in a dynamic environment: theory and applications. International Journal of Robotics Research 30(8), 10151036.
Zouein, G. (2009). A biologically inspired DNA-based approach to developing cellular adaptive systems. PhD Thesis. University of Southern California.
Zouein, G., Chen, C., & Jin, Y. (2010). Create adaptive systems through “DNA” guided cellular formation. Proc. 1st Int. Conf. Design Creativity (ICDC2010), Kobe, Japan.
Zykov, V., Mytilinaios, E., Adams, B., & Lipson, H. (2005). Self reproducing machines. Nature 435, 163164.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed