Skip to main content Accesibility Help

Evolutionary structural and spatial adaptation of topologically differentiated tensile systems in architectural design

  • Sean Ahlquist (a1) (a2), Dillon Erb (a1) and Achim Menges (a2)

This paper presents research in the development of heuristic evolutionary algorithms (EAs) for generating and exploring differentiated force-based structures. The algorithm is weighted toward design exploration of topological differentiation while including specific structural and material constraints. An embryological EA model is employed to “grow” networks of mass-spring elements achieving desired mesh densities that resolve themselves in tensile force (form-active) equilibrium. The primal quadrilateral quadrisection method serves as the foundation for a range of extensible subdivision methods. Unique to this research, the quad is addressed as a “cell” rather than a topological or geometric construct, allowing for the contents of the cell to vary in number of mass-spring elements and orientation. In this research, this approach has been termed the quadrilateral quadrisection with n variable topological transformation method. This research culminates with the introduction of a method for grafting meshes where emergent features from the evolved meshes can be transposed and replicated in an explicit yet informed manner. The EA and grafting methods function within a Java-based software called springFORM, developed in previous research, which utilizes a mass-spring based library for solving force equilibrium and allows for both active (manual) and algorithmic topology manipulation. In application to a specific complex tensile mesh, the design framework, which combines the generative EA and mesh grafting method, is shown to produce emergent and highly differentiated topological arrangements that negotiate the specific relationships among a desired maximal mesh density, geometric patterning, and equalized force distribution.

Corresponding author
Reprint requests to: Sean Ahlquist, Taubman College of Architecture and Urban Planning, University of Michigan, 2000 Bonisteel Boulevard, Ann Arbor, MI 48109, USA. E-mail:
Hide All
Ahlquist, S., Kampowski, T., Oliyan Torghabehi, O., Menges, A., & Speck, T. (2014). Development of a digital framework for the computation of complex material and morphological behavior of biological and technological systems. Computer-Aided Design 60, 84104.
Ahlquist, S., Lienhard, J., Knippers, J., & Menges, A. (2013). Physical and numerical prototyping for integrated bending and form-active textile hybrid structures. Rethinking Prototyping: Proc. Design Modelling Symp., DMS ’13. Berlin: Springer.
Ahlquist, S., & Menges, A. (2010). Realizing formal and functional complexity for structurally dynamic systems in rapid computational means. Proc. Advances in Architectural Geometry Conf., AGG ’10. Berlin: Springer.
Ahlquist, S., & Menges, A. (2013). Frameworks for computational design of textile micro-architectures and material behavior in forming complex force-active structures. Adaptive Architecture Proc. Association for Computer Aided Design in Architecture, ACADIA ’13. Cambridge: Riverside Press.
Aish, R. (2011). DesignScript: origins, explanation, illustration. Proc. Design Modeling Symp., DMS ’11, Berlin: Springer.
Aish, R. (2013). DesignScript: a learning environment for design computation. Rethinking Prototyping: Proc. Design Modeling Symp., DMS ’13. Berlin: Springer.
Aish, R., Fisher, A., Joyce, S., & Marsh, A. (2012). Progress towards multi-criteria design optimisation using designscript with smart form, robot structural analysis and ecotect building performance analysis. Synthetic Digital Ecologies, Proc. Association for Computer Aided Design in Architecture, San Francisco, CA, October 18–21.
Baraff, D., & Witkin, A. (1998). Large steps in cloth simulation. Proc. Computer Graphics and Interactive Techniques, SIGGRAPH ’98. Orlando, FL: ACM.
Bentley, P., & Corne, D. (2002). An introduction to creative evolutionary systems. In Creative Evolutionary Systems (Bentley, P.J., & Corne, D.W., Eds.), pp. 175. San Diego, CA: Academic Press.
Bentley, P., & Kumar, S. (1999). Three ways to grow designs: a comparison of embryogenies for an evolutionary design problem. Proc. Genetic and Evolutionary Computation Conf., GECCO ’99, Orlando, FL, July 14–17.
Crutchfield, J.P. (1994). The calculi of emergence: computation, dynamics, and induction. Physica D: Nonlinear Phenomena 75(1–3), 1154.
Dianati, M., Song, I., & Treiber, M. (2002). An introduction to genetic algorithms and evolution strategies. Technical report, University of Waterloo.
Gerber, D. (2012). PARA—typing informing form and the making of difference. International Journal of Architectural Computing 10(4), 501520.
Greenwold, S. (2009). Simong particles. Accessed at on October 3, 2011.
Holland, J.H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control and Artificial Intelligence. Cambridge, MA: MIT Press.
Jones, G. (2002). Genetic and evolutionary algorithms. In Encyclopedia of Computational Chemistry. London: Wiley.
Kilian, A., & Ochsendorf, J. (2005). Particle-spring systems for structural form finding. Journal of the International Association for Shell and Spatial Structures 46(148), 7784.
Kim, I.Y., & de Weck, O.L. (2005). Variable chromosome length genetic algorithm for progressive refinement in topology optimization. Structural and Multidisciplinary Optimization 29(6), 445456.
Laumanns, M., Zitzler, E., & Thiele, L. (2000). A unified model for multi-objective evolutionary algorithms with elitism. Proc. Congr. Evolutionary Computation, La Jolla, CA, July 16–19, 2000.
Manos, S., Large, M.C.J., & Poladian, L. (2007). Evolutionary design of single-mode microstructured polymer optical fibres using an artificial embryogeny representation. Proc. 9th Annual Conf. Genetic and Evolutionary Computation, GECCO ‘07. London: ACM.
Oliyan Torghabehi, O., & von Buelow, P. (2014). Performance oriented generative design of structural double skin facades inspired by cell morphologies. Proc. Shells, Membranes and Spatial Structures, IASS-SLTE ’14, Brasilia, September 15–19.
O'Reilly, U.M., & Hemberg, M. (2007). Integrating generative growth and evolutionary computation for form exploration. Genetic Programming and Evolvable Machines 8(2), 163186.
Poli, R., Langdon, W., & McPhee, N. (2008). A field guide to genetic programming. Accessed at on June 15, 2014.
Rosenman, M.A., & Gero, J.S. (1999). Evolving designs by generating useful complex gene structures. In Evolutionary Design by Computers (Bentley, P., Ed.), pp. 345364. San Francisco, CA: Morgan Kaufmann.
Russell, P.J. (1992). Genetics. New York: Harper Collins.
Ryoo, J., & Hajela, P. (2004). Handling variable string lengths in GA-based structural topology optimization. Structural and Multidisciplinary Optimization 26(5), 318325.
Schein, M., & Tessmann, O. (2008). Structural analysis as driver in surface-based design approaches. International Journal of Architectural Computing 6(1), 1939.
Schmidt, R. (2012). Interactive modeling with mesh surfaces. Proc. ACM SIGGRAPH 2012. Los Angeles, August 5–9, 2012.
Sedgewick, R., & Wayne, K. (2011). Algorithms. Boston: Pearson Education.
Shiue, L.-J., & Peters, J. (2005). Mesh refinement based on Euler encoding. Proc. Shape Modeling and Applications SMI ’05, Cambridge, MA, June 13–17.
Terzopoulos, D., Platt, J., Barr, A., & Fleischer, K. (1987). Elastically deformable models. Computer Graphics 21(4), 205214.
Turner, J.S. (2007). The Tinkerer's Accomplice. Cambridge, MA: Harvard University Press.
von Buelow, P. (2007). Genetically Engineered Architecture: Design Exploration With Evolutionary Computation. Saarbrücken, Germany: AV Akademiker Verlag.
von Buelow, P. (2008). Breeding topology: special considerations for generative topology exploration using evolutionary computation. Proc. Association for Computer Aided Design in Architecture Conf., pp. 346–353, Minneapolis, MN, October 16–19.
Welch, W., & Witkin, A. (1994). Free-form shape design using triangulated surfaces. Proc. Conf. Computer Graphics and Interactive Techniques, SIGGRAPH ’94. New York: ACM.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0890-0604
  • EISSN: 1469-1760
  • URL: /core/journals/ai-edam
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed