Skip to main content
×
Home

Special Issue: AI in equipment service

  • ALICE AGOGINO (a1), PIERO BONISSONE (a2), KAI GOEBEL (a2) and GEORGE VACHTSEVANOS (a3)
    • Published online: 11 January 2002
Abstract

This issue of AIEDAM focuses on AI in equipment service. Recently there has been a strong and renewed emphasis on AI technologies that can be used to monitor products and processes, detect incipient failures, identify possible faults (in various stages of development), determine preventive or corrective action, and generate a cost-efficient repair plan and monitor its execution. This renewed emphasis stems from a focus of manufacturing companies on the service market where they hope to grow their market share by offering their customers novel and aggressive service contracts. This service market includes power generation equipment, aircraft engines, medical imaging systems, and locomotives, just to name a few. In some of these new service offerings, the old parts-and-labor billing model is replaced by guaranteed uptime. This in turn places the motivation to maintain equipment in working order on the servicing company. Monitoring can be more efficiently accomplished, in part, by employing remotely monitored systems. Big strides have been taken for in-use monitoring of stationary equipment, such as manufacturing plants or high-end appliances, and also mobile systems such as transportation systems (vehicles, aircraft, locomotives, etc.). While advances in hardware development make it possible to perform these tasks efficiently, there are new avenues for progress in accompanying AI software techniques. Some of these approaches have their roots in efforts of years past while others arise from new challenges. Characteristics of typical challenges for AI in monitoring and diagnosis (M&D) service can be categorized into input, model, and output. In particular, input questions try

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Special Issue: AI in equipment service
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Special Issue: AI in equipment service
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Special Issue: AI in equipment service
      Available formats
      ×
Copyright
Corresponding author
Reprint requests to: Dr. Kai Goebel, GE CR&D, Information Systems Lab, K1-5C4A, One Research Circle, Niskayuna, NY 12309, USA. E-mail: goebelk@crd.ge.com
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

AI EDAM
  • ISSN: 0890-0604
  • EISSN: 1469-1760
  • URL: /core/journals/ai-edam
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 53 *
Loading metrics...

Abstract views

Total abstract views: 91 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th November 2017. This data will be updated every 24 hours.