Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-489z4 Total loading time: 0.219 Render date: 2022-05-21T08:48:30.400Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

Special Issue: AI in equipment service

Published online by Cambridge University Press:  11 January 2002

ALICE AGOGINO
Affiliation:
Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
PIERO BONISSONE
Affiliation:
GE Corporate Research & Development, Information Systems Lab, Niskayuna, NY 12309, USA
KAI GOEBEL
Affiliation:
GE Corporate Research & Development, Information Systems Lab, Niskayuna, NY 12309, USA
GEORGE VACHTSEVANOS
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This issue of AIEDAM focuses on AI in equipment service. Recently there has been a strong and renewed emphasis on AI technologies that can be used to monitor products and processes, detect incipient failures, identify possible faults (in various stages of development), determine preventive or corrective action, and generate a cost-efficient repair plan and monitor its execution. This renewed emphasis stems from a focus of manufacturing companies on the service market where they hope to grow their market share by offering their customers novel and aggressive service contracts. This service market includes power generation equipment, aircraft engines, medical imaging systems, and locomotives, just to name a few. In some of these new service offerings, the old parts-and-labor billing model is replaced by guaranteed uptime. This in turn places the motivation to maintain equipment in working order on the servicing company. Monitoring can be more efficiently accomplished, in part, by employing remotely monitored systems. Big strides have been taken for in-use monitoring of stationary equipment, such as manufacturing plants or high-end appliances, and also mobile systems such as transportation systems (vehicles, aircraft, locomotives, etc.). While advances in hardware development make it possible to perform these tasks efficiently, there are new avenues for progress in accompanying AI software techniques. Some of these approaches have their roots in efforts of years past while others arise from new challenges. Characteristics of typical challenges for AI in monitoring and diagnosis (M&D) service can be categorized into input, model, and output. In particular, input questions try

Type
GUEST EDITORIAL
Information
AI EDAM , Volume 15 , Issue 4 , September 2001 , pp. 265 - 266
Copyright
© 2001 Cambridge University Press
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Special Issue: AI in equipment service
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Special Issue: AI in equipment service
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Special Issue: AI in equipment service
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *