Skip to main content
×
×
Home

Genetics, environment and bovine respiratory disease

  • Gary Snowder (a1)
Abstract

The heritability estimates for resistance and/or susceptibility to bovine respiratory disease (BRD) are small, suggesting response to direct selection will be slow. The number of mammalian genetic markers associated with resistance to specific pathogens or improved immunity is increasing and will provide additional information for developing selection criteria for producing animals with an innate resistance to BRD. Environmental and management factors play significant roles in the prevalence of BRD and must be considered in a holistic approach to reducing BRD. Although no single solution for preventing BRD is likely to be discovered in the immediate future, the long-term outlook appears very promising.

Copyright
Corresponding author
E-mail: GDSnowder@ag.tamu.edu
References
Hide All
Aich, P, Babiuk, LA, Potter, AA and Griebel, P (2009). Biomarkers for prediction of bovine respiratory disease outcome. OMICS Journal of Integrative Biology 13: 111.
Assie, S, Seegers, H and Beaudeau, F (2004). Incidence of respiratory disorders during housing in non-weaned Charolais calves in cow-calf farms of Pays de la Loire (western France). Preventative Veterinary Medicine 63: 271282.
Bryson, DG (1985). Calf pneumonia. Veterinary Clinics of North American Food Animal Practice 2: 237242.
Callan, RJ and Garry, FB (2002). Biosecurity and bovine respiratory disease. Veterinary Clinics of North American Food Animal Practice 18: 5777.
Casas, E and Snowder, GD (2008). A putative quantitative trait locus on chromosome 20 associated with bovine pathogenic disease incidence. Journal of Animal Science 86: 24552460.
Cusack, PMV, McMeniman, NP and Lean, IJ (2007). Feedlot entry characteristics and climate: their relationship with cattle growth rate, bovine respiratory disease and mortality. Australian Veterinary Journal 85: 311316.
Donaldson, L, Vuocolo, T, Gray, C, Strandberg, Y, Reverter, A, McWilliam, S, Wang, Y, Byrne, K and Tellam, R (2005). Construction and validation of a bovine innate immune microarray. BMC Genomics 6: 135 (22 pgs). www.biomedcentral.com/1471-2164/6/135
Duff, GS and Galyean, ML (2007). Recent advances in management of highly stress, newly received feedlot cattle. Journal of Animal Science 85: 823840.
Ellis, JA (2001). The immunology of the bovine respiratory disease complex. Veterinary Clinics of North America Food Animal Practice 17: 535549.
Fett, T, Zecchinon, L, Vanden Bergh, P and Desmecht, D (2008). Mannheimia haemolytica leukotoxin-induced cytolysis of caprine (Capra hircus) leukocytes is mediated by the CD18 subunit of β2-integrins. Microbial Pathogenesis 45: 337342.
May, BJ, Zhang, Q, Li, LL, Paustian, ML, Whittam, TS and Kapur, V (2001). Complete genomic sequence of Pasteurella multocida, Pm70. Proceedings National Academy of Sciences, USA 98: 34603465.
Muggli-Cockett, NE, Cundiff, LV and Gregory, KE (1992). Genetic analysis of bovine respiratory disease in beef calves during the first year of life. Journal of Animal Science 70: 20132019.
Salak-Johnson, JL and McGlone, JJ (2007). Making sense of apparently conflicting data: stress and immunity in swine and cattle. Journal of Animal Science 85 (Electronic Supplement): E81E88.
Snowder, GD, Van Vleck, LD, Cundiff, LV and Bennett, GL (2005). Influence of breed, heterozygosity, and disease incidence on estimates of variance components of respiratory disease in preweaned beef calves. Journal of Animal Science 83: 12471261.
Snowder, GD, Van Vleck, LD, Cundiff, LV and Bennett, GL (2006). Bovine respiratory disease in feedlot cattle: environmental, genetic, and economic factors. Journal of Animal Science 84: 19992008.
Snowder, GD, Van Vleck, LD, Cundiff, LV, Bennett, GL, Koohmaraie, M and Dikeman, ME (2007). Bovine respiratory disease in feedlot cattle: Phenotypic, environmental, and genetic correlations with growth, carcass, and longissimus muscle palatability traits. Journal of Animal Science 85: 18851892.
Zecchinon, L, Fett, T and Desmecht, D (2005). How Mannheimia haemolytica defeats host defence through a kiss of death mechanism. Veterinary Research 36: 133156.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Animal Health Research Reviews
  • ISSN: 1466-2523
  • EISSN: 1475-2654
  • URL: /core/journals/animal-health-research-reviews
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed