Skip to main content Accessibility help

Interactions between commensal bacteria and the gut-associated immune system of the chicken

  • Jennifer T. Brisbin (a1), Joshua Gong (a2) and Shayan Sharif (a1)


The chicken gut-associated lymphoid tissue is made up of a number of tissues and cells that are responsible for generating mucosal immune responses and maintaining intestinal homeostasis. The normal chicken microbiota also contributes to this via the ability to activate both innate defense mechanisms and adaptive immune responses. If left uncontrolled, immune activation in response to the normal microbiota would pose a risk of excessive inflammation and intestinal damage. Therefore, it is important that immune responses to the normal microbiota be under strict regulatory control. Through studies of mammals, it has been established that the mucosal immune system has specialized regulatory and anti-inflammatory mechanisms for eliminating or tolerating the normal microbiota. The mechanisms that exist in the chicken to control host responses to the normal microbiota, although assumed to be similar to that of mammals, have not yet been fully described. This review summarizes what is currently known about the host response to the intestinal microbiota, particularly in the chicken.


Corresponding author

*Corresponding author. E-mail:


Hide All
Amit-Romach, E, Sklan, D and Uni, Z (2004). Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poultry Science 83: 10931098.
Angel, R, Dalloul, RA and Doerr, J (2005). Performance of broiler chickens fed diets supplemented with a direct-fed microbial. Poultry Science 84: 12221231.
Bachmann, MF, Kalinke, U, Althage, A, Freer, G, Burkhart, C, Roost, H, Aguet, M, Hengartner, H and Zinkernagel, RM (1997). The role of antibody concentration and avidity in antiviral protection. Science 76: 20242027.
Baranov, V and Hammarström, S (2004). Carcinoembryonic antigen (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1), apically expressed on human colonic M cells, are potential receptors for microbial adhesion. Histochemistry and Cell Biology 121: 8389.
Befus, AD, Johnston, N, Leslie, GA and Bienenstock, J (1980). Gut-associated lymphoid tissue in the chicken. Journal of Immunology 125: 26262632.
Bjerrum, L, Engberg, RM, Leser, TD, Jensen, BB, Finster, K and Pedersen, K (2006). Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Science 85: 11511164.
Blaser, MJ and Kirschner, D (2007). The equilibria that allow bacterial persistence in human hosts. Nature 449: 843849.
Brisbin, JT, Zhou, H, Gong, J, Sabour, P, Akbari, MR, Haghighi, HR, Yu, H, Clarke, A, Sarson, AJ and Sharif, S (2008). Gene expression profiling of chicken lymphoid cells after treatment with Lactobacillus acidophilus cellular components. Developmental and Comparative Immunology 32: 563574.
Brockus, CW, Jackwood, MW and Harmon, BG (1998). Characterization of beta-defensin prepropeptide mRNA from chicken and turkey bone marrow. Animal Genetics 29: 283289.
Byrne, CM, Clyne, M and Bourke, B (2007). Campylobacter jejuni adhere to and invade chicken intestinal epithelial cells in vitro. Microbiology 153: 561569.
Cebra, JJ (1999). Influences of microbiota on intestinal immune system development. American Journal of Clinical Nutrition 69: 1046S1051S.
Chichlowski, M, Croom, J, McBride, BW, Daniel, L, Davis, G and Koci, MD (2007). Direct-fed microbial PrimaLac and salinomycin modulate whole-body and intestinal oxygen consumption and intestinal mucosal cytokine production in the broiler chick. Poultry Science 86: 11001106.
Coombes, JL and Maloy, KJ (2007). Control of intestinal homeostasis by regulatory T cells and dendritic cells. Seminars in Immunology 19: 116126.
Dalloul, RA, Lillehoj, HS, Shellem, TA and Doerr, JA (2003). Intestinal immunomodulation by vitamin A deficiency and lactobacillus-based probiotic in eimeria acervulina-infected broiler chickens. Avian Diseases 47: 13131320.
Dalloul, RA, Lillehoj, HS, Tamim, NM, Shellem, TA and Doerr, JA (2005). Induction of local protective immunity to eimeria acervulina by a Lactobacillus-based probiotic. Comparative Immunology Microbiology and Infectious Diseases 28: 351361.
Degen, WGJ, van Daal, N, Rothwell, L, Kaiser, P and Schijns, VEJC (2005). Th1/Th2 polarization by viral and helminth infection in birds. Veterinary Microbiology 105: 163167.
Del Moral, MG, Fonfria, J, Varas, A, Jimenez, E, Moreno, J and Zapata, AG (1998). Appearance and development of lymphoid cells in the chicken (Gallus gallus) caecal tonsil. Anatomical Record 250: 182189.
Dogi, CA and Perdigon, G (2006). Importance of the host specificity in the selection of probiotic bacteria. Journal of Dairy Research 73: 357366.
Dumonceaux, TJ, Hill, JE, Hemmingsen, SM and Van Kessel, AG (2006). Characterization of intestinal microbiota and response to dietary virginiamycin supplementation in the broiler chicken. Applied and Environmental Microbiology 72: 28152823.
Engberg, RM, Hedemann, MS, Leser, TD and Jensen, BB (2000). Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poultry Science 79: 13111319.
England, JA, Watkins, SE, Saleh, E, Waldroup, PW, Casas, I and Burnham, D (1996). Effects of Lactobacillus reuteri on live performance and intestinal development of male turkeys. Journal of Applied Poultry Research 5: 311324.
Farnell, MB, Donoghue, AM, de Los Santos, FS, Blore, PJ, Hargis, BM, Tellez, G and Donoghue, DJ (2006). Upregulation of oxidative burst and degranulation in chicken heterophils stimulated with probiotic bacteria. Poultry Science 85: 19001906.
Fukui, A, Inoue, N, Matsumoto, M, Nomura, M, Yamada, K, Matsuda, Y, Toyoshima, K and Seya, T (2001). Molecular cloning and functional characterization of chicken toll-like receptors: a single chicken toll covers multiple molecular patterns. The Journal of Biological Chemistry 276: 4714347149.
Ganz, T (2003). Defensins: antimicrobial peptides of innate immunity. Nature Reviews Immunology 3: 710720.
Göbel, TW, Kaspers, B and Stangassinger, M (2001). NK and T cells constitute two major, functionally distinct intestinal epithelial lymphocyte subsets in the chicken. International Immunology 13: 757762.
Gong, J, Forster, RJ, Yu, H, Chambers, JR, Sabour, PM, Wheatcroft, R and Chen, S (2002). Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiology Letters 208: 17.
Gong, J, Si, W, Forster, RJ, Huang, R, Yu, H, Yin, Y, Yang, C and Han, Y (2007). 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiology Ecology 59: 147157.
Gong, J, Yu, H, Liu, T, Gill, JJ, Chambers, JR, Wheatcroft, R and Sabour, PM (2008). Effects of zinc bacitracin, bird age, and access to range on bacterial microbiota in the ileum and ceca of broiler chickens. Journal of Applied Microbiology, in press.
Granato, D, Bergonzelli, GE, Pridmore, RD, Marvin, L, Rouvet, M and Corthesy-Theulaz, IE (2004). Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infection and Immunity 72: 21602169.
Haghighi, HR, Gong, JH, Gyles, CL, Hayes, MA, Sanei, B, Parvizi, P, Gisavi, H, Chambers, JR and Sharif, S (2005). Modulation of antibody-mediated immune response by probiotics in chickens. Clinical and Diagnostic Laboratory Immunology 12: 13871392.
Haghighi, HR, Gong, JH, Gyles, CL, Hayes, MA, Zhou, HJ, Sanei, B, Chambers, JR and Sharif, S (2006). Probiotics stimulate production of natural antibodies in chickens. Clinical and Vaccine Immunology 13: 975980.
Haghighi, HR, Abdul-Careem, MF, Dara, RA, Chambers, JR and Sharif, S (2008). Cytokine gene expression in chicken cecal tonsils following treatment with probiotics and Salmonella infection. Veterinary Microbiology 126: 225233.
Hansell, C, Zhu, XW, Brooks, H, Sheppard, M, Withanage, S, Maskell, D and McConnell, I (2007). Unique features and distribution of the chicken CD83+ cell. Journal of Immunology 179: 51175125.
Harmon, BG (1998). Avian heterophils in inflammation and disease resistance. Poultry Science 77: 972977.
Hasenstein, JR, Zhang, G and Lamont, SJ (2006). Analyses of five gallinacin genes and the Salmonella enterica serovar enteritidis response in poultry. Infection and Immunity 74: 33753380.
He, H, Lowry, VK, Swaggerty, CL, Ferro, PJ and Kogut, MH (2005). In vitro activation of chicken leukocytes and in vivo protection against Salmonella enteritidis organ invasion and peritoneal S. enteritidis infection-induced mortality in neonatal chickens by immunostimulatory CpG oligodeoxynucleotide. FEMS Immunology and Medical Microbiology 43: 8189.
He, H, Genovese, KJ, Nisbet, DJ and Kogut, MH (2006). Profile of toll-like receptor expressions and induction of nitric oxide synthesis by toll-like receptor agonists in chicken monocytes. Molecular Immunology 43: 783789.
Higgs, R, Cormican, P, Cahalane, S, Allan, B, Lloyd, AT, Meade, K, James, T, Lynn, DJ, Babiuk, LA and O'farrelly, C (2006). Induction of a novel chicken toll-like receptor following Salmonella enterica serovar typhimurium Infection. Infection and Immunity 74: 16921698.
Higgins, SE, Erf, GF, Higgins, JP, Henderson, SN, Wolfenden, AD, Gaona-Ramirez, G and Hargis, BM (2007). Effect of probiotic treatment in broiler chicks on intestinal macrophage numbers and phagocytosis of Salmonella enteritidis by abdominal exudate cells. Poultry Science 86: 23152321.
Higuchi, M, Matsuo, A, Shingai, M, Shida, K, Ishii, A, Funami, K, Suzuki, Y, Oshiumi, H, Matsumoto, M and Seya, T (2008). Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken toll-like receptor 2 subfamily. Developmental and Comparative Immunology 32: 147155.
Iqbal, M, Philbin, VJ and Smith, AL (2005). Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Veterinary Immunology and Immunopathology 104: 117127.
Iwasaki, A and Medzhitov, R (2004). Toll-like receptor control of the adaptive immune responses. Nature Immunology 5: 987995.
Izcue, A, Coombes, JL and Powrie, F (2006). Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunological Reviews 212: 256271.
Jenssen, H, Hamill, P and Hancock, REW (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews 19: 491511.
Jin, LZ, Ho, YW, Abdullah, N, Ali, MA and Jalaludin, S (1998). Effects of adherent Lactobacillus cultures on growth, weight of organs and intestinal microflora and volatile fatty acids in broilers. Animal Feed Science and Technology 70: 197209.
Keestra, AM, de Zoete, MR, van Aubel, RA and van Putten, JP (2007). The central leucine-rich repeat region of chicken TLR16 dictates unique ligand specificity and species-specific interaction with TLR2. Journal of Immunology 178: 71107119.
Knarreborg, A, Simon, MA, Engberg, RM, Jensen, BB and Tannock, GW (2002). Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Applied and Environmental Microbiology 68: 59185924.
Koenen, ME, Kramer, J, van der Hulst, R, Heres, L, Jeurissen, SHM and Boersma, WJA (2004a). Immunomodulation by probiotic lactobacilli in layer- and meat-type chickens. British Poultry Science 45: 355366.
Koenen, ME, van der Hulst, R, Leering, M, Jeurissen, SH and Boersma, WJ (2004b). Development and validation of a new in vitro assay for selection of probiotic bacteria that express immune-stimulating properties in chickens in vivo. FEMS Immunology and Medical Microbiology 40: 119127.
Kogut, MH, Iqbal, M, He, H, Philbin, V, Kaiser, P and Smith, A (2005). Expression and function of toll-like receptors in chicken heterophils. Developmental and Comparative Immunology 29: 791807.
Kogut, MH, Swaggerty, C, He, HQ, Pevzner, I and Kaiser, P (2006). Toll-like receptor agonists stimulate differential functional activation and cytokine and chemokine gene expression in heterophils isolated from chickens with differential innate responses. Microbes and Infection 8: 18661874.
Koskinen, R, Göbel, TW, Tregaskes, CA, Young, JR and Vainio, O (1998). The structure of avian CD5 implies a conserved function. Journal of immunology 160: 49434950.
Leveque, G, Forgetta, V, Morroll, S, Smith, AL, Bumstead, N, Barrow, P, Loredo-Osti, JC, Morgan, K and Malo, D (2003). Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar typhimurium infection in chickens. Infection and Immunity 71: 11161124.
Liebler-Tenorio, EM and Pabst, R (2006). MALT structure and function in farm animals. Veterinary Research 37: 257280.
Lillehoj, HS and Trout, JM (1996). Avian gut-associated lymphoid tissues and intestinal immune responses to eimeria parasites. Clinical Microbiology Reviews 9: 349360.
Lillehoj, HS and Chung, KS (1992). Postnatal development of T-lymphocyte subpopulations in the intestinal intraepithelium and lamina propria in chickens. Veterinary Immunology and Immunopathology 31: 347360.
Lotz, M, Gütle, D, Walther, S, Ménard, S, Bogdan, C and Hornef, MW (2006). Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. The Journal of Experimental Medicine 203: 973984.
Mack, DR, Michail, S, Wei, S, McDougall, L and Hollingsworth, MA (1999). Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. American Journal of Physiology-Gastrointestinal and Liver Physiology 276: G941G950.
Mack, DR, Ahrne, S, Hyde, L, Wei, S and Hollingsworth, MA (2003). Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52: 827833.
Macpherson, AJ, Gatto, D, Sainsbury, E, Harriman, GR, Hengartner, H and Zinkernagel, RM (2000). A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288: 22222226.
Macpherson, AJ and Uhr, T (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303: 16621665.
Macpherson, AJ, Hunziker, L, McCoy, K and Lamarre, A (2001). IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms. Microbes and Infection 3: 10211035.
Medellin-Peña, MJ, Wang, H, Johnson, R, Anand, S and Griffiths, MW (2007). Probiotics Affect Virulence-Related Gene Expression in Escherichia coli O157:H7. Applied and Environmental Microbiology 73: 42594267.
Meylan, E, Tschopp, J and Karin, M (2006). Intracellular pattern recognition receptors in the host response. Nature 442: 3944.
Milona, P, Townes, CL, Bevan, RM and Hall, J (2007). The chicken host peptides, gallinacins 4, 7, and 9 have antimicrobial activity against Salmonella serovars. Biochemical and Biophysical Research Communications 356: 169174.
Moal, VLL and Servin, AL (2006). The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clinical Microbiology Reviews 19: 315337.
Mohan, B, Kadirvel, R, Natarajan, A and Bhaskaran, M (1996). Effect of probiotic supplementation on growth, nitrogen utilization and serum cholesterol in broilers. British Poultry Science 37: 395401.
Monteleone, G, Pallone, F and MacDonald, TT (2005). Smad7 in TGF- beta -mediated negative regulation of gut inflammation. Trends in Immunology 25: 513517.
Muir, WI, Bryden, WL and Husband, AJ (2000). Immunity, vaccination and the avian intestinal tract. Developmental and Comparative Immunology 24: 325342.
Nahashon, SN, Nakaue, HS and Mirosh, LW (1994). Production variables and nutrient retention in single comb white leghorn laying pullets fed diets supplemented with direct-fed microbials. Poultry Science 73: 16991711.
Niers, LE, Timmerman, HM, Rijkers, GT, van Bleek, GM, van Uden, NO, Knol, EF, Kapsenberg, ML, Kimpen, JL and Hoekstra, MO (2005). Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clinical and Experimental Allergy 35: 14811489.
O'Hara, AM and Shanahan, F (2006). The gut flora as a forgotten organ. EMBO Reports 7: 688693.
Pamer, EG (2007). Immune responses to commensal and environmental microbes. Nature Immunology 8: 11731178.
Pascual, M, Hugas, M, Badiola, JI, Monfort, JM and Garriga, M (2003). Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Applied and Environmental Microbiology 65: 49814986.
Patterson, JA and Burkholder, KM (2003). Application of prebiotics and probiotics in poultry production. Poultry Science 82: 627631.
Pedroso, AA, Menten, JFM, Lambais, MR, Racanicci, AMC, Longo, FA and Sorbara, JOB (2006). Intestinal bacterial community and growth performance of chickens fed diets containing antibiotics. Poultry Science 85: 747752.
Philbin, VJ, Iqbal, M, Boyd, Y, Goodchild, MJ, Beal, RK, Bumstead, N, Young, J and Smith, AL (2005). Identification and characterization of a functional, alternatively spliced toll-like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunology 114: 507521.
Rakoff-Nahoum, S, Paglino, J, Eslami-Varzaneh, F, Edberg, S and Medzhitov, R (2004). Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229241.
Ratcliffe, MJH (2006). Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Developmental and Comparative Immunology 30: 101118.
Reis e Sousa, C (2004). Activation of dendritic cells: translating innate into adaptive immunity. Current Opinion in Immunology 16: 2125.
Reynaud, CA, Mackay, CR, Muller, RG and Weill, JC (1991). Somatic generation of diversity in a mammalian primary lymphoid organ – the sheep ileal peyers-patches. Cell 64: 9951005.
Rhee, K, Sethupathi, P, Driks, A, Lanning, DK and Knight, KL (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. Journal of Immunology 172: 11181124.
Rolfe, RD (2000). The role of probiotic cultures in the control of gastrointestinal health. Journal of Nutrition 130: 396S402S.
Salanitro, JP, Blake, IG, Muirehead, PA, Maglio, M and Goodman, JR (1978). Bacteria isolated from the duodenum, ileum, and cecum of young chicks. Applied Environmental Microbiology 35: 782790.
Schneitz, C, Kiiskinen, T, Toivonen, V and Nasi, M (1998). Effect of BROILACT (R) on the physicochemical conditions and nutrient digestibility in the gastrointestinal tract of broilers. Poultry Science 77: 426432.
Schwarz, H, Schneider, K, Ohnemus, A, Lavric, M, Kothlow, S, Bauer, S, Kaspers, B and Staeheli, P (2007). Chicken toll-like receptor 3 recognizes its cognate ligand when ectopically expressed in human cells. Journal of Interferon and Cytokine Research 27: 97101.
Shapiro, SK and Sarles, WB (1949). Microorganisms in the intestinal tract of normal chickens. Journal of Bacteriology 58: 531544.
Singer, RS and Hofacre, CL (2006). Potential Impacts of Antibiotic Use in Poultry Production. Avian Diseases 50: 161172.
Smirnov, A, Perez, R, Amit-Romach, E, Sklan, D and Uni, Z (2005). Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation. Journal of Nutrition 135: 187192.
Snoeck, V, Peters, IR and Cox, E (2006). The IgA system: a comparison of structure and function in different species. Veterinary Research 37: 455467.
Smythies, LE, Sellers, M, Clements, RH, Mosteller-Barnum, M, Meng, G, Benjamin, WH, Orenstein, JM and Smith, PD (2005). Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. Journal of Clinical Investigation 115: 6675.
Steidler, L, Hans, W, Schotte, L, Neirynck, S, Obermeier, F, Falk, W, Fiers, W and Remaut, E (2000).Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 13521355.
Stokes, C and Waly, N (2006). Mucosal defence along the gastrointestinal tract of cats and dogs. Veterinary Research 37: 281293.
Sugiarto, H and Yu, P (2004). Avian antimicrobial peptides: the defense role of beta-defensins. Biochemical and Biophysical Research Communications 323: 721727.
Takeda, K, Kaisho, T and Akira, S (2003). Toll-like receptors. Annual Review of Immunology 21: 335376.
Teng, QY, Zhou, JY, Wu, JJ, Guo, JQ and Shen, HG (2006). Characterization of chicken interleukin 2 receptor alpha chain, a homolog to mammalian CD25. FEBS Letters 580: 42744281.
Timmerman, HM, Veldman, A, van den Elsen, E, Rombouts, FM and Beynen, AC (2006). Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics. Poultry Science 85: 13831388.
Vandenbergh, PA (1993). Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiology Reviews 12: 221237.
van Dijk, A, Veldhuizen, EJ, van Asten, AJ and Haagsman, HP (2005). CMAP27, a novel chicken cathelicidin-like antimicrobial protein. Veterinary Immunology and Immunopathology 106: 321327.
van Dijk, A, Veldhuizen, EJ, Kalkhove, SI, Tjeerdsma-van Bokhoven, JL, Romijn, RA and Haagsman, HP (2007). The beta-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrobial Agents and Chemotherapy 51: 912922.
Vaughn, LE, Holt, PS, Moore, RW and Gast, RK (2006). Enhanced gross visualization of chicken Peyer's patch: novel staining technique applied to fresh tissue specimens. Avian Diseases 50: 298302.
Verma, M, Madhu, M, Marrota, C, Lakshmi, CV and Davidson, EA (1994). Mucin coding sequences are remarkably conserved. Cancer Biochemistry Biophysics 14: 4151.
Wise, MG and Siragusa, GR (2007). Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. Journal of Applied Microbiology 102: 11381149.
Withanage, GS, Wigley, P, Kaiser, P, Mastroeni, P, Brooks, H, Powers, C, Beal, R, Barrow, P, Maskell, D and McConnell, I (2005). Cytokine and chemokine responses associated with clearance of a primary Salmonella enterica serovar Typhimurium infection in the chicken and in protective immunity to rechallenge. Infection and Immunity 73: 51735182.
Xiao, Y, Hughes, AL, Ando, J, Matsuda, Y, Cheng, JF, Skinner-Noble, D and Zhang, G (2004). A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics 5: 56.
Xiao, Y, Cai, Y, Bommineni, YR, Fernando, SC, Prakash, O, Gilliland, SE and Zhang, G (2006). Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. Journal of Biological Chemistry 281: 28582867.
Xu, ZR, Hu, CH, Xia, MS, Zhan, XA and Wang, MQ (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Science 82: 10301036.
Yasuda, M, Tanaka, S, Arakawa, H, Taura, Y, Yokomizo, Y and Ekino, S (2002). A comparative study of gut-associated lymphoid tissue in calf and chicken. Anatomical Record 266: 207217.
Yilmaz, A, Shen, S, Adelson, DL, Xavier, S and Zhu, JJ (2005). Identification and sequence analysis of chicken toll-like receptors. Immunogenetics 56: 743753.
Yurong, Y, Ruiping, S, Shimin, Z and Yibao, J (2005). Effect of probiotics on intestinal mucosal immunity and ultrastructure of cecal tonsils of chickens. Archives of Animal Nutrition 59: 237246.
Zhao, CQ, Nguyen, T, Liu, LD, Sacco, RE, Brogden, KA and Lehrer, RI (2001). Gallinacin-3, an inducible epithelial beta-defensin in the chicken. Infection and Immunity 69: 26842691.
Zhou, H, Gong, J, Brisbin, JT, Yu, H, Sanei, B, Sabour, P and Sharif, S (2007). Appropriate chicken sample size for identifying the composition of broiler intestinal microbiota affected by dietary antibiotics, using the polymerase chain reaction-denaturing gradient gel electrophoresis technique. Poultry Science 86: 25412549.
Zulkifli, I, Abdullah, N, Azrin, NM and Ho, YW (2000). Growth performance and immune response of two commercial broiler strains fed diets containing Lactobacillus cultures and oxytetracycline under heat stress conditions. British Poultry Science 41: 593597.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Animal Health Research Reviews
  • ISSN: 1466-2523
  • EISSN: 1475-2654
  • URL: /core/journals/animal-health-research-reviews
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed