Hostname: page-component-797576ffbb-6mkhv Total loading time: 0 Render date: 2023-12-03T23:04:04.136Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

The effects of an Aspergillus oryzae extract containing alpha-amylase activity on ruminal fermentation and milk production in lactating Holstein cows

Published online by Cambridge University Press:  09 March 2007

J. M. Tricarico*
Alltech Biotechnology Inc., Nicholasville, KY 40356, USA
J. D. Johnston
Ritchie Feed & Seed Inc., Ottawa, ON K1B 4V5, Canada
K. A. Dawson
Alltech Biotechnology Inc., Nicholasville, KY 40356, USA
K. C. Hanson
Department of Animal Science, University of Kentucky, Lexington, KY 40546, USA
K. R. McLeod
Department of Animal Science, University of Kentucky, Lexington, KY 40546, USA
D. L. Harmon
Department of Animal Science, University of Kentucky, Lexington, KY 40546, USA
Get access


The effects of an Aspergillus oryzae extract containing alpha-amylase activity (Amaize™, Alltech Inc., Nicholasville, KY) were examined in vivo and in vitro. A lactating cow study employed 20 intact and four ruminally fistulated Holstein cows in a replicated 4 × 4 Latin-square design to examine the effects of four concentrations of dietary Amaize™ extract on milk production and composition, ruminal fermentation and serum metabolite concentrations. The treatment diets contained 0, 240, 480 or 720 alpha-amylase dextrinizing units (DU) per kg of total mixed ration (TMR) (dry-matter basis). The supplemental alpha-amylase increased the yields of milk (P = 0·02), fat (P = 0·02) and protein (P = 0·06) quadratically. The maximum milk yield was obtained when 240 DU per kg of TMR were offered. Ruminal in situ starch disappearance was not affected by alpha-amylase supplementation in lactating cows or ruminally cannulated steers. Supplemental alpha-amylase extract reduced the molar proportion of propionate in the rumen of steers (P = 0·08) and lactating cows (P = 0·04), and in rumen-simulating cultures (P = 0·04). The supplement also increased the molar proportions of acetate (P = 0·06) and butyrate (P = 0·05), and the serum beta-hydroxybutyrate (P = 0·01) and non-esterified fatty acid (P = 0·03) concentrations in lactating cows. The improvements in milk production appear to be a consequence of the effects of alpha-amylase on ruminal fermentation and the potential changes in nutrient metabolism that result from them. We conclude that supplemental alpha-amylase may be given to modify ruminal fermentation and improve milk and component yield in lactating Holstein cattle.

Research Article
Copyright © British Society of Animal Science 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aiello, R. J., Armentano, L. E., Bertics, S. J. and Murphy, A. T. 1989. Volatile fatty acid uptake and propionate metabolism in ruminant hepatocytes. Journal of Dairy Science 72: 942949.Google Scholar
Association of Official Analytical Chemists. 1990. Official methods of analysis, 15th edition. AOAC, Arlington, VA.Google Scholar
Beauchemin, K. A., Colombatto, D., Morgavi, D. P., Yang, W. Z. and Rode, L. M. 2004. Mode of action of exogenous cell wall degrading enzymes for ruminants. Canadian Journal of Animal Science 84: 1322.Google Scholar
Beauchemin, K. A., Rode, L. M. and Sewalt, V. J. H. 1995. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Canadian Journal of Animal Science 75: 641644.Google Scholar
Burroughs, W., Woods, W., Ewing, S. A., Greig, J. and Theurer, B. 1960. Enzyme additions to fattening cattle rations. Journal of Animal Science 19: 458464.Google Scholar
Chen, K. H., Huber, J. T., Simas, J., Theurer, C. B., Yu, P., Chan, S. C., Santos, F., Wu, Z., Swingle, R. S. and DePeters, E. J. 1995. Effect of enzyme treatment on steam-flaking of sorghum grain on lactation and digestion in dairy cows. Journal of Animal Science 78: 17211727.Google Scholar
Cotta, M. A. 1992. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch. Applied Environmental Microbiology 58: 4854.Google Scholar
Enjalbert, F., Nicot, M. C., Bayourthe, C., and Monocoulon, R. 2001. Ketone bodies in milk and blood of dairy cows: relationship between concentrations and utilization for detection of subclinical ketosis. Journal of Dairy Science 84: 583589.Google Scholar
Erwin, E. S., Marco, G. J. and Emery, E. M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. Journal of Dairy Science 44: 17681770.Google Scholar
Fahey, G. C. and Berger, L. L. 1988. Carbohydrate nutrition of ruminants. In The ruminant animal: digestive physiology and nutrition (ed. Church, D. C.), pp. 269297. Waveland Press, Prospect Heights, IL.Google Scholar
Food Chemicals Codex. 1996. Food Chemicals Codex, fourth edition. National Academy Press, Washington, DC.Google Scholar
Grummer, R. R. 1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. Journal of Dairy Science 76: 38823896.Google Scholar
Heitmann, R. N., Dawes, D. J. and Sensenig, S. C. 1987. Hepatic ketogenesis and peripheral ketone body utilization in the ruminant. Journal of Nutrition 117: 11741180.Google Scholar
Herrera-Saldaña, R. and Huber, J. T. 1989. Influence of varying protein and starch degradabilities on performance of lactating cows. Journal of Dairy Science 72: 14771483.Google Scholar
Holm, J. I., Bjork, I., Drews, A. and Asp, N. G. 1986. A rapid method for the analysis of starch. Starch 7: 224226.Google Scholar
Hristov, A. N., McAllister, T. A. and Cheng, K. -J. 2000. Intraruminal supplementation with increasing levels of exogenous polysaccharides-degrading enzymes: effects on nutrient digestion in cattle fed a barley grain diet. Journal Animal Science 78: 477487.Google Scholar
Huhtanen, P., Miettinen, H. and Ylinen, M. 1993. Effect of increasing ruminal butyrate on milk yield and blood constituents in dairy cows fed a grass silage-based diet. Journal of Dairy Science 76: 11141124.Google Scholar
Krehbiel, C. R., Harmon, D. L. and Schnieder, J. E. 1992. Effect of increasing ruminal butyrate on portal and hepatic nutrient flux in steers. Journal of Animal Science 70: 904914.Google Scholar
Kristensen, N. B. 2005. Splanchnic metabolism of volatile fatty acids in the dairy cow. Animal Science 80: 310.Google Scholar
Kristensen, N. B. and Harmon, D. L. 2004. Effects of increasing ruminal butyrate absorption on splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers. Journal of Animal Science 82: 35493559.Google Scholar
Kristensen, N. B., Pierzynowski, S. G. and Danfær, A. 2000. Portal-drained visceral metabolism of 3-hydroxybutyrate in sheep. Journal of Animal Science 78: 22232228.Google Scholar
Kuehl, R. O. 2000. Design of experiments: statistical principles of research design and analysis, second edition. Duxbury Press, Pacific Grove, CA.Google Scholar
Lewis, G. E., Sanchez, W. K., Hunt, C. W., Guy, M. A., Pritchard, G. T., Swanson, B. I. and Treacher, R. J. 1999. Effect of direct-fed fibrolytic enzymes on the lactational performance of dairy cows. Journal of Dairy Science 82: 611617.Google Scholar
Lykos, T., Varga, G. A. and Casper, D. 1997. Varying degradation rates of total nonstructural carbohydrates: effects on ruminal fermentation, blood metabolites, and milk production and composition in high producing Holstein cows. Journal of Dairy Science 80: 33413355.Google Scholar
McAllister, T. A., Oosting, S. J., Popp, J. D., Mir, Z., Yanke, L. Y., Hristov, A. N., Treacher, R. J. and Cheng, K. -J. 1999. Effect of exogenous enzymes on digestibility of barley silage and growth performance of feedlot cattle. Canadian Journal of Animal Science 79: 353360.Google Scholar
McDougall, E. I. 1948. Studies on ruminant saliva. I. the composition and output of sheep's saliva. Biochemistry Journal 43: 99109.Google Scholar
Miettinen, H. and Huhtanen, P. 1996. Effects of the ratio of ruminal propionate to butyrate on milk yield and blood metabolites in dairy cows. Journal of Dairy Science 79: 851861.Google Scholar
Miller, G. L., Blum, R., Glennon, W. E. and Burton, A. L. 1960. Measurement of carboxymethylcellulase activity. Analytical Biochemistry 2: 127132.Google Scholar
Murphy, M., Akerlind, M. and Holtenius, K. 2000. Rumen fermentation in lactating cows selected for milk fat content fed two forage concentrate ratios with hay or silage. Journal of Dairy Science 83: 756764.Google Scholar
Noziere, P., Martin, C., Remond, D., Kristensen, N. B., Bernard, R. and Doreau, M. 2000. Effect of composition of ruminally-infused short-chain fatty acids on net fluxes of nutrients across portal-drained viscera in underfed ewes. British Journal of Nutrition 83: 521531.Google Scholar
Owens, F. N. and Goetsch, A. L. 1988. Ruminal fermentation. In The ruminant animal: digestive physiology and nutrition (ed. Church, D. C.), pp. 145171. Waveland Press, Prospect Heights, IL.Google Scholar
Owens, F. N., Secrist, D. S., Hill, W. J. and Gill, D. R. 1998. Acidosis in cattle: a review. Journal of Animal Science 76: 275286.Google Scholar
Perry, T. W., Purkhiser, E. D. and Beeson, W. M. 1966. Effects of supplemental enzymes on nitrogen balance, digestibility of energy and nutrients and on growth and feed efficiency of cattle. Journal of Animal Science 25: 760764.Google Scholar
Ralston, A. T., Church, D. C. and Oldfield, J. E. 1962. Effect of enzymes on digestibility of low quality roughage. Journal of Animal Science 21: 306308.Google Scholar
San Emeterio, F., Reis, R. B., Campos, W. E. and Satter, L. D. 2000. Effect of coarse or fine grinding on utilization of dry or ensiled corn by lactating dairy cows. Journal of Dairy Science 83: 28392848.Google Scholar
Seymour, W. M., Campbell, D. R. and Johnson, Z. B. 2005. Relationships between rumen volatile fatty acid concentrations and milk production in dairy cows: a literature study. Animal Feed Science and Technology 119: 155169.Google Scholar
Slyter, L. L., Nelson, W. O. and Wolin, M. J. 1964. Modifications of a device for maintenance of the rumen microbial population in continuous culture. Applied Microbiology 12: 374377.Google Scholar
Swanson, K. C., Matthews, J. C., Matthews, A. D., Howell, J. A., Richards, C. J. and Harmon, D. L. 2000. Dietary carbohydrate source and energy intake influence the expression of pancreatic alpha-amylase in lambs. Journal of Nutrition 130: 21572165.Google Scholar
Statistical Analysis Systems Institute. 2001. SAS user's guide: statistics, version 8. 01. SAS Institute Inc., Cary, NC.Google Scholar
Trinder, P. 1969. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry 6: 2427.Google Scholar
Van Soest, P. J. 1982. Nutritional ecology of the ruminant. Cornell University Press, Ithaca, NY.Google Scholar
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.Google Scholar
Vanzant, E. S., Cochran, R. C. and Titgemeyer, E. C. 1998. Standardization of in situ techiques for ruminant feedstuff evaluation. Journal of Animal Science 76: 27172729.Google Scholar
Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39: 971974.Google Scholar