Skip to main content Accessibility help
×
×
Home

Vehicle motion and motion sickness in pigs

  • J. M. Randall (a1) and R. H. Bradshaw (a2)
Abstract

Low frequency oscillatory motion (0·05 to 0·5 Hz) experienced in ships and road vehicles is known to cause motion sickness in humans and some predictive models are available. There have been very few studies of the incidence of motion sickness in pigs and none which has attempted to identify the frequencies of motion of transporters which are likely to be implicated. In this study, the vibration and motion characteristics of a commercial pig transporter were measured while seven individually penned 40-kg pigs were transported for short (100 min) journeys and 80-kg pigs penned in groups of 12 or 13 were transported for longer (4·5 h) journeys. Direct behavioural observations were made of individual pigs for symptoms of travel sickness (sniffing, foaming at the mouth, chomping, and retching or vomiting). A comparison was then made between the incidence of travel sickness in pigs and that expected in humans given the measured vehicle vibration characteristics. The low frequencies of motion measured on the transporter (0·01 to 0·2 Hz) were well within the range implicated in human motion sickness with considerable power in the longitudinal and lateral axes but little in the vertical axis. On both short and long journeys pigs exhibited symptoms of travel sickness. The likely incidence of travel sickness on the short journeys predicted by the human model was 24 to 31% which corresponds to approximately two of the seven 40-kg pigs becoming travel sick. The numbers observed were generally lower than this although the same pigs were transported twice each day for 2 days and this may have therefore reflected the effects of habituation. The incidence of travel sickness on the long journeys predicted by the human model was 34%. During these journeys which involved four groups of 80-kg pigs which were not repeatedly transported, 26% of pigs vomited or retched (13 out of 50) while 50% showed advanced symptoms of foaming and chomping. These results are not inconsistent with the human model which should form the basis offurther research.

Copyright
References
Hide All
Bradshaw, R. H. and Hall, S. J. G. 1996. Incidence of travel sickness in pigs. Veterinary Record 139: 503.
Bradshaw, R. H., Hall, S. J. G. and Broom, D. M. 1996a. Behavioural and cortisol response of pigs and sheep during transport. Veterinary Record 138: 233234.
Bradshaw, R. H., Parrott, R. F., Forsling, M. L., Goode, J. A., Lloyd, D. M., Rodway, R. G. and Broom, D. M. 1996b. Stress and travel sickness in pigs: effects of road transport on plasma concentrations of cortisol, beta-endorphin and lysine vasopressin. Animal Science 63: 507516.
Bradshaw, R. H., Parrott, R. F., Goode, J. A., Lloyd, D. M., Rodway, R. G. and Broom, D. M. 1996c. Behavioural and hormonal responses of pigs during transport: effect of mixing and duration of journey. Animal Science 62: 547554.
Bradshaw, R. H., Randall, J. M., Stiles, M. A., Brown, S. N., Forsling, M. L., Rodway, R., Goode, J. A., Warriss, P. D. and Broom, D. M. 1997. Effects of travel sickness on stress hormones and meat quality in pigs. Proceedings of the British Society of Animal Science, 1997, p. 103.
British Standards Institution. 1987. Measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock. BS 6841. British Standards Institution, London.
Forsling, M. L., Sharman, D. F. and Stephens, D. B. 1984. Vasopressin in the blood plasma of pigs and calves exposed t o noise and vibration comparable with that experienced during transport. Journal of Physiology 357: 96P.
Fox, R. A., Keil, L. C., Daunton, N. G., Crampton, G. H. and Lucot, J. 1987. Vasopressin and motion sickness in cats. Aviation, Space, and Environmental Medicine 58: A143–A147.
Golding, J. F. and Markey, H. M. 1996. Effect of frequency of horizontal linear oscillation on motion sickness and somatogravic illusion Aviation, Space, and Environmental Medicine 67: 121126.
Golding, J. F., Markey, H. M. and Stott, J. R. R. 1995. The effects of motion direction, body axis, and posture on motion sickness induced by low frequency linear oscillation. Aviation, Space, and Environmental Medicine 66: 10461051.
Griffin, M. J. 1990. Handbook of human vibration. Academic Press, London.
Lawther, A. and Griffin, M. J. 1986. The motion of a ship at sea and the consequent motion sickness amongst passengers Ergonomics 29: 535552.
Perremans, S., Randall, J. M., Allegaert, L., Stiles, M. A., Rombouts, G. and Geers, R. 1998. Influence of vertical vibration on the heart rate of pigs. Journal of Animal Science In press.
Riches, H., Guise, J. and Penny, R. 1996. Preliminary investigation of frequency of vomiting by pigs in transport. Veterinary Record 139: 428.
Stephens, D. B. and Perry, G. C. 1990. The effects of restraint, handling, simulated and real transport in the pig (with reference to man and other species) Applied Animal Behaviour Science 28: 4155.
Turner, M. 1992. A description of low frequency motion in road coaches. Proceedings of the United Kingdom meeting human response to vibration, 28 to 30 September, I.S.V.R University of Southampton, Southampton, pp. 323339.
Turner, M. 1994. Driven to sickness? The effect of individual driving style on motion sickness occurrence. Proceedings of the United Kingdom meeting on human to vibration, 19 to 21 September, Institute of Naval Medicine, Alverstoke, Hampshire, 13 pp.
Vogel, H., Kohlhaas, R. and Baumgarten, R. J. von. 1982. Dependence of motion sickness in automobiles on the direction of linear acceleration European Journal of Applied Physiology 48: 399405.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Animal Science
  • ISSN: 1357-7298
  • EISSN: 1748-748X
  • URL: /core/journals/animal-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed