Skip to main content
×
×
Home

Cohort effects in mortality modelling: a Bayesian state-space approach

  • Man Chung Fung (a1), Gareth W. Peters (a2) and Pavel V. Shevchenko (a3)
Abstract

Cohort effects are important factors in determining the evolution of human mortality for certain countries. Extensions of dynamic mortality models with cohort features have been proposed in the literature to account for these factors under the generalised linear modelling framework. In this paper we approach the problem of mortality modelling with cohort factors incorporated through a novel formulation under a state-space methodology. In the process we demonstrate that cohort factors can be formulated naturally under the state-space framework, despite the fact that cohort factors are indexed according to year-of-birth rather than year. Bayesian inference for cohort models in a state-space formulation is then developed based on an efficient Markov chain Monte Carlo sampler, allowing for the quantification of parameter uncertainty in cohort models and resulting mortality forecasts that are used for life expectancy and life table constructions. The effectiveness of our approach is examined through comprehensive empirical studies involving male and female populations from various countries. Our results show that cohort patterns are present for certain countries that we studied and the inclusion of cohort factors are crucial in capturing these phenomena, thus highlighting the benefits of introducing cohort models in the state-space framework. Forecasting of cohort models is also discussed in light of the projection of cohort factors.

Copyright
Corresponding author
*Correspondence to: Pavel V. Shevchenko, Department of Applied Finance and Actuarial Studies, Macquarie University, Sydney, NSW, Australia. E-mail: pavel.shevchenko@mq.edu.au
References
Hide All
Andrieu, C., Doucet, A. & Holenstein, R. (2010). Particle Markov Chain Monte Carlo methods. Journal of Royal Statistical Society Series B, 72, 269342.
Barrieu, P., Bensusan, H., El Karoui, N., Hillairet, C., Loisel, S., Ravanelli, C. & Salhi, Y. (2012). Understanding, modelling and managing longevity risk: key issues and main challenges. Scandinavian Actuarial Journal, 3, 203231.
Biffis, E. (2005). Affine processes for dynamic mortality and actuarial valuations. Insurance: Mathematics and Economics, 37(3), 443468.
Brouhns, N., Denuit, M. & Vermunt, J.K. (2002). A Poisson log-bilinear regression approach to the construction of projected lifetables. Insurance: Mathematics and Economics, 31, 373393.
Cairns, A., Blake, D. & Dowd, K. (2006). A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. Journal of Risk and Insurance, 73(4), 687718.
Cairns, A., Blake, D. & Dowd, K. (2008). Modelling and management of mortality risk: a review. Scandinavian Actuarial Journal, 2(3), 79113.
Cairns, A., Blake, D., Dowd, K., Coughlan, G., Epstein, D., Ong, A. & Balevich, I. (2009). A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial Journal, 13(1), 135.
Cairns, A., Blake, D., Dowd, K. & Kessler, A.R. (2016). Phantoms never dies: living with unreliable population data. Journal of the Royal Statistical Society: Series A, 179(4), 9751005.
Carter, C. K. & Kohn, R. (1994). On Gibbs sampling for state-space models. Biometrika, 81(3), 541553.
Celeux, C., Forbes, F., Robert, C.P. & Titterington, D.M. (2006). Deviance information criteria for missing data models. Bayesian Analysis, 1(4), 651674.
Chan, J.C.C. & Grant, A.L. (2016). On the observed-data deviance information criterion for volatility modelling. Journal of Financial Econometrics, 14(4), 772802.
Currie, I.D. (2009). Smoothing and forecasting mortality rates with P-splines. Available online at the address http://www.ma.hw.ac.uk/ iain/research.talks.html [accessed 01-Feb-2017].
Currie, I.D. (2016). On fitting generalized linear and non-linear models of mortality. Scandinavian Actuarial Journal, 2016(4), 356383.
Czado, C., Delwarde, A. & Denuit, M. (2005). Bayesian Poisson log-bilinear mortality projections. Insurance: Mathematics and Economics, 36, 260284.
Dahl, M. & Moller, T. (2006). Valuation and hedging of life insurance liabilities with systematic mortality risk. Insurance: Mathematics and Economics, 39, 193217.
De Jong, P. & Tickle, L. (2006). Extending the Lee-Carter mortality forecasting. Mathematical Population Studies, 13, 118.
Del Moral, P., Peters, G.W. & Vergé, C. (2013). An introduction to stochastic particle integration methods: With applications to risk and insurance. In J. Dick, F. Kuo, G. Peters & I. Sloan, (Eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012. Springer Proceedings in Mathematics & Statistics (Vol. 65) (pp. 3981). Springer, Berlin, Heidelberg.
Delwarde, A., Denuit, M. & Eilers, P.H.C. (2007). Smoothing the Lee-Carter and Poisson log-bilinear models for mortality forecasting: a penalized likelihood approach. Statistical Modelling, 7, 2948.
Doucet, A., Pitt, M.K., Deligiannidis, G. & Kohn, R. (2015). Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika, 102(2), 295313.
Dowd, K., Cairns, A., Blake, D., Coughlan, G., Epstein, D. & Khalaf-Allah, M. (2010). Evaluating the goodness of fit of stochastic mortality models. Insurance: Mathematics and Economics, 47, 255265.
Enchev, V., Kleinow, T. & Cairns, A.J.G. (2016). Multi-population mortality models: fitting, forecasting and comparisons. Scandinavian Actuarial Journal, 2017(4), 319342.
Fung, M. C., Ignatieva, K. & Sherris, M. (2014). Systematic mortality risk: an analysis of guaranteed lifetime withdrawal benefits in variable annuities. Insurance: Mathematics and Economics, 58, 103115.
Fung, M.C., Peters, G.W. & Shevchenko, P.V. (2015). A state-space estimation of the Lee-Carter mortality model and implications for annuity pricing. In T. Weber, M.J. McPhee & R.S. Anderssen, (Eds.), MODSIM2015, 21st International Congress on Modelling and Simulation (pp. 952958). Modelling and Simulation Society of Australia and New Zealand. www.mssanz.org.au/modsim2015/E1/fung.pdf.
Fung, M.C., Peters, G.W. & Shevchenko, P.V. (2017). A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting. Annals of Actuarial Science, 11(2), 343389.
Gourieroux, C. & Monfort, A. (1997). Time Series and Dynamic Models. Cambridge University Press.
Haberman, S. & Renshaw, A. (2011). A comparative study of parametric mortality projection models. Insurance: Mathematics and Economics, 48, 3555.
Harvey, A. C. (1989). Forecasting: Structural Time Series Models and the Kalman Filter. Cambridge University Press.
Hirz, J., Schmock, U. & Shevchenko, P.V. (2017a). Actuarial applications and estimation of extended CreditRisk+. Risks, 5(2), 23:123:29.
Hirz, J., Schmock, U. & Shevchenko, P.V. (2017b). Crunching mortality and life insurance portfolios with extended CreditRisk+. Risk Magazine, January, 98–103.
Hunt, A. & Villegas, A. M. (2015). Robustness and convergence in the Lee-Carter model with cohort effects. Insurance: Mathematics and Economics, 64, 186202.
Kleinow, T. & Richards, S. J. (2016). Parameter risk in time-series mortality forecasts. Scandinavian Actuarial Journal, 2017(9), 804828. http://dx.doi.org/10.1080/03461238.2016.1255655.
Kogure, A., Kitsukawa, K. & Kurachi, Y. (2009). A Bayesian comparison of models for changing mortalities toward evaluating longevity risk in japan. Asia-Pacific Journal of Risk and Insurance, 3(2), 121.
Kogure, A. & Kurachi, Y. (2010). A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions. Insurance: Mathematics and Economics, 46, 162172.
Koissi, M., Shapiro, A.F. & Hognas, G. (2006). Evaluating and extending Lee-Carter model for mortality forecasting: bootstrap confidence interval. Insurance: Mathematics and Economics, 38, 120.
Lee, R.D. & Carter, L.R. (1992). Modeling and forecasting U.S. mortality. Journal of the American Statistical Association, 87, 659675.
Leng, X. & Peng, L. (2016). Inference pitfalls in Lee-Carter model for forecasting mortality. Insurance: Mathematics and Economics, 70, 5865.
Li, J., Chan, W. & Cheung, S. (2011). Structural changes in the Lee-Carter mortality indexes. North American Actuarial Journal, 15(1), 1331.
Liu, Y. & Li, J.S.-H. (2016). It’s all in the hidden states: a longevity hedging strategy with an explicit measure of population basis risk. Insurance: Mathematics and Economics, 70, 301319.
Liu, Y. & Li, J.S.-H. (2017). The locally linear Cairns-Blake-Dowd model: a note on delta-nuga hedging of longevity risk. ASTIN Bulletin, 47(1), 79151.
Luciano, E. & Vigna, E. (2008). Mortality risk via affine stochastic intensities: calibration and empirical relevance. Belgian Actuarial Bulletin, 8(1), 516.
Murphy, M. (2009). The “golden generations” in historical context. British Actuarial Journal, 15, 151184.
Murphy, M. (2010). Reexamining the dominance of birth cohort effects on mortality. Population and Development Review, 36(2), 365390.
O’Hare, C. & Li, Y. (2012). Explaining young mortality. Insurance, Mathematics and Economics, 50, 1225.
Pedroza, C. (2006). A Bayesian forecasting model: predicting U.S. male mortality. Bio-Statistics, 7(4), 530550.
Peters, G.W., Targino, R.S. & Wuthrich, M.V. (2017). Bayesian modelling, Monte Carlo sampling and capital allocation of insurance risks. Risks 5, 53. Available at SSRN: 2961888.
Petris, G., Petrone, S. & Campagnoli, P. (2009). Dynamic Linear Models with R. Springer.
Plat, R. (2009). On stochastic mortality modeling. Insurance: Mathematics and Economics, 45(3), 393404.
Renshaw, A. & Haberman, S. (2003). Lee-Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics, 33, 255272.
Renshaw, A. & Haberman, S. (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics, 38, 556570.
Shang, H.L., Booth, H. & Hyndman, R.J. (2011). Point and interval forecasts of mortality rates and life expectancy: a comparison of ten principal component methods. Demography, 25(5), 173214.
Shevchenko, P.V., Hirz, J. & Schmock, U. (2015). Forecasting leading death causes in australia using extended CreditRisk+. In T. Weber, M.J. McPhee & R.S. An-derssen, (Eds.) MODSIM2015, 21st International Congress on Modelling and Simulation (pp. 966972). Modelling and Simulation Society of Australia and New Zealand. www.mssanz.org.au/modsim2015/E1/shevchenko.pdf.
Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64, 583639.
van Berkum, F., Antonio, K. & Vellekoop, M. (2016). The impact of multiple structural changes on mortality predictions. Scandinavian Actuarial Journal, 2016(7), 581603.
van Dyk, D.A. & Park, T. (2008). Partially collapsed Gibbs samplers: theory and methods. Journal of the American Statistical Association, 103(482), 790796.
Villegas, A.M., Millossovich, P. & Kaishev, V. (2015). StMoMo: An R package for stochastic mortality modelling. Available at SSRN: 2698729.
Willets, R. C. (2004). The cohort effect: insights and explanations. British Actuarial Journal, 10, 833877.
Yang, S.S., Yue, J.C. & Huang, H. (2010). Modeling longevity risks using a principal component approach: a comparison with existing stochastic mortality models. Insurance: Mathematics and Economics, 46(1), 254270.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Actuarial Science
  • ISSN: 1748-4995
  • EISSN: 1748-5002
  • URL: /core/journals/annals-of-actuarial-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords