Hostname: page-component-7d684dbfc8-8ckrc Total loading time: 0 Render date: 2023-09-25T14:06:58.968Z Has data issue: true Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Controls on diel soil CO2 flux across moisture gradients in a polar desert

Published online by Cambridge University Press:  15 June 2015

Becky A. Ball*
School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, AZ 85306, USA
Ross A. Virginia
Environmental Studies Program, Dartmouth College, Hanover, NH 03755, USA


The McMurdo Dry Valleys of Antarctica are a climate-sensitive ecosystem, where future projected climate warming will increase liquid water availability to release soil biology from physical limitations and alter ecosystem processes. For example, many studies have shown that CO2 flux, an important aspect of the carbon cycle, is controlled by temperature and moisture, which often overwhelm biotic contributions in desert ecosystems. However, these studies used either single-point measurements during peak times of biological activity or diel cycles at individual locations. Here, we present diel cycles of CO2 flux from a range of soil moisture conditions and a variety of locations and habitats to determine how diel cycles of CO2 flux vary across gradients of wet-to-dry soil and whether the water source influences the diel cycle of moist soil. Soil temperature, water content and microbial biomass significantly influenced CO2 flux. Soil temperature explained most of the variation. Soil CO2 flux moderately increased with microbial biomass, demonstrating a sometimes small but significant role of biological fluxes. Our results show that over gradients of soil moisture, both geochemical and biological fluxes contribute to soil CO2 flux, and physical factors must be considered when estimating biological CO2 flux in systems with low microbial biomass.

Biological Sciences
© Antarctic Science Ltd 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adams, B.J., Bardgett, R.D., Ayres, E., Wall, D.H., Aislabie, J., Bamforth, S., Bargagli, R., Cary, C., Cavacini, P., Connell, L., Convey, P., Fell, J.W., Frati, F., Hogg, I.D., Newsham, K.K., O’Donnell, A., Russell, N., Seppelt, R.D. & Stevens, M.I. 2006. Diversity and distribution of Victoria Land biota. Soil Biology & Biochemistry, 38, 30033018.Google Scholar
Allison, S.D., Wallenstein, M.D. & Bradford, M.A. 2010. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3, 336340.Google Scholar
Ball, B.A. & Virginia, R.A. 2012. Meltwater seep patches increase heterogeneity of soil geochemistry and therefore habitat suitability. Geoderma, 189, 652660.Google Scholar
Ball, B.A. & Virginia, R.A 2014. The ecological role of moss in a polar desert: implications for aboveground-belowground and terrestrial-aquatic linkages. Polar Biology, 37, 651664.Google Scholar
Ball, B.A., Barrett, J.E., Gooseff, M.N., Virginia, R.A. & Wall, D.H. 2011. Implications of meltwater pulse events for soil biology and biogeochemical cycling in a polar desert. Polar Research, 30, 10.3402/polar.v30i0, 14555.Google Scholar
Ball, B.A., Virginia, R.A., Barrett, J.E., Parsons, A.N. & Wall, D.H. 2009. Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils. Soil Biology & Biochemistry, 41, 15101517.Google Scholar
Barrett, J.E., Virginia, R.A., Wall, D.H., Parsons, A.N., Powers, L.E. & Burkins, M.B. 2004. Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology, 85, 31053118.Google Scholar
Bockheim, J.G. & McLeod, M. 2008. Soil distribution in the McMurdo Dry Valleys, Antarctica. Geoderma, 144, 4349.Google Scholar
Bockheim, J.G., Campbell, I.B. & McLeod, M. 2007. Permafrost distribution and active-layer depths in the McMurdo dry valleys, Antarctica. Permafrost and Periglacial Processes, 18, 217227.Google Scholar
Bockheim, J.G., Campbell, I.B. & McLeod, M. 2008. Use of soil chronosequences for testing the existence of high-water-level lakes in the McMurdo Dry Valleys, Antarctica. Catena, 74, 144152.Google Scholar
Bokhorst, S., Huiskes, A., Convey, P. & Aerts, R. 2007. Climate change effects on organic matter decomposition rates in ecosystems from the Maritime Antarctic and Falkland Islands. Global Change Biology, 13, 26422653.Google Scholar
Burkins, M.B., Virginia, R.A. & Wall, D.H. 2001. Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Global Change Biology, 7, 113125.Google Scholar
Burkins, M.B., Virginia, R.A., Chamberlain, C.P. & Wall, D.H. 2000. Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology, 81, 23772391.Google Scholar
Cable, J.M., Ogle, K., Lucas, R.W., Huxman, T.E., Loik, M.E., Smith, S.D., Tissue, D.T., Ewers, B.E., Pendall, E., Welker, J.M., Charlet, T.N., Cleary, M., Griffith, A., Nowak, R.S., Rogers, M., Steltzer, H., Sullivan, P.F. & van Gestel, N.C. 2010. The temperature responses of soil respiration in deserts: a seven desert synthesis. Biogeochemistry, 103, 7190.Google Scholar
Campbell, I.B. & Claridge, G.G.C. 1987. Antarctica: soils, weathering processes and environment. New York, NY: Elsevier, 368 pp.Google Scholar
Campbell, I.B., Claridge, G.G.C., Balks, M.R. & Campbell, D.I. 1997. Moisture content in soils of the McMurdo Sound and Dry Valley region of Antarctica. In Lyons, W.B., Howard-Williams, C. & Hawes, I., eds. Ecosystem processes in Antarctic ice-free landscapes. London: CRC Press, 6176.Google Scholar
Chapman, W.L. & Walsh, J.E. 2007. A synthesis of Antarctic temperatures. Journal of Climate, 20, 40964117.Google Scholar
Elberling, B., Gregorich, E.G., Hopkins, D.W., Sparrow, A.D., Novis, P. & Greenfield, L.G. 2006. Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biology & Biochemistry, 38, 30953106.Google Scholar
Graf, A., Weihermuller, L., Huisman, J.A., Herbst, M., Bauer, J. & Vereecken, H. 2008. Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences, 5, 11751188.Google Scholar
Hall, B.L. & Denton, G.H. 2000. Radiocarbon chronology of Ross Sea drift, eastern Taylor Valley, Antarctica: evidence for a grounded ice sheet in the Ross Sea at the Last Glacial Maximum. Geografiska Annaler - Physical Geography, 82A, 305336.Google Scholar
Hartley, I.P., Hopkins, D.W., Garnett, M.H., Sommerkorn, M. & Wookey, P.A. 2008. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecology Letters, 11, 10921100.Google Scholar
Higgins, S.M., Hendy, C.H. & Denton, G.H. 2000. Geochronology of Bonney drift, Taylor Valley, Antarctica: evidence for interglacial expansions of Taylor Glacier. Geografiska Annaler - Physical Geography, 82A, 391409.Google Scholar
Horwath, W.R. & Paul, E.A. 1994. Microbial biomass. In Weaver, R.W., Angle, S., Bottomley, P., Bezdiecek, D., Smith, S., Tabatabai, A., Wollum, A., Mickelson, S.H. & Bigham, J.M., eds. Methods of soil analysis. Part 2: Microbiological and biochemical properties. Madison, WI: Soil Science Society of America, 753773.Google Scholar
Kelsey, K.C., Wickland, K.P., Striegl, R.G. & Neff, J.C. 2012. Variation in soil carbon dioxide efflux at two spatial scales in a topographically complex Boreal Forest. Arctic, Antarctic, and Alpine Research, 44, 457468.Google Scholar
Levy, J.S., Fountain, A.G., Gooseff, M.N., Welch, K.A. & Lyons, W.B. 2011. Water tracks and permafrost in Taylor Valley, Antarctica: extensive and shallow groundwater connectivity in a cold desert ecosystem. Geological Society of America Bulletin, 123, 22952311.Google Scholar
Logan, M. 2010. Multiple and curvilinear regression. In Biostatistical design and analysis using R: a practical guide. Oxford: Wiley-Blackwell, 208253.Google Scholar
Ma, J., Wang, Z.-Y., Stevenson, B.A., Zheng, X.-J. & Li, Y. 2013. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils. Scientific Reports, 3, 10.1038/srep02025.Google Scholar
Matías, L., Castro, J. & Zamora, R. 2012. Effect of simulated climate change on soil respiration in a Mediterranean-type ecosystem: rainfall and habitat type are more important than temperature or the soil carbon pool. Ecosystems, 15, 299310.Google Scholar
Mavi, M.S., Marschner, P., Chittleborough, D.J., Cox, J.W. & Sanderman, J. 2012. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biology & Biochemistry, 45, 813.Google Scholar
Moorhead, D.L., Doran, P.T., Fountain, A.G., Lyons, W.B., McKnight, D.M., Priscu, J.C., Virginia, R.A. & Wall, D.H. 1999. Ecological legacies: impacts on ecosystems of the McMurdo Dry Valleys. Bioscience, 49, 10091019.Google Scholar
Nielsen, U.N., Wall, D.H., Adams, B.J., Virginia, R.A., Ball, B.A., Gooseff, M.N. & McKnight, D.M. 2012. The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. Ecosphere, 3, 10.1890/ES11-00325.1.Google Scholar
Oechel, W.C., Hastings, S.J., Vourlitis, G., Jenkins, M., Riechers, G. & Grulke, N. 1993. Recent change of arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature, 361, 520523.Google Scholar
Parsons, A.N., Barrett, J.E., Wall, D.H. & Virginia, R.A. 2004. Soil carbon dioxide flux in Antarctic dry valley ecosystems. Ecosystems, 7, 286295.Google Scholar
Phillips, C.L., Nickerson, N., Risk, D., Bond, B.J. 2011. Interpreting diel hysteresis between soil respiration and temperature. Global Change Biology, 17, 515527.Google Scholar
Risk, D., Lee, C.K., MacIntyre, C. & Cary, S.C. 2013. First year-round record of Antarctic Dry Valley soil CO2 flux. Soil Biology & Biochemistry, 66, 193196.Google Scholar
Schindlbacher, A., Wunderlich, S., Borken, W., Kitzler, B., Zechmeister-Boltenstern, S. & Jandl, R. 2012. Soil respiration under climate change: prolonged summer drought offsets soil warming effects. Global Change Biology, 18, 22702279.Google Scholar
Shanhun, F.L., Almond, P.C., Clough, T.J. & Smith, C.M.S. 2012. Abiotic processes dominate CO2 fluxes in Antarctic soils. Soil Biology & Biochemistry, 53, 99111.Google Scholar
Steig, E.J., Schneider, D.P., Rutherford, S.D., Mann, M.E., Comiso, J.C. & Shindell, D.T. 2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462.Google Scholar
Walsh, J.E. 2009. A comparison of Arctic and Antarctic climate change, present and future. Antarctic Science, 21, 179188.Google Scholar
Zeglin, L.H., Sinsabaugh, R.L., Barrett, J.E., Gooseff, M.N. & Takacs-Vesbach, C.D. 2009. Landscape distribution of microbial activity in the McMurdo Dry Valleys: linked biotic processes, hydrology, and geochemistry in a cold desert ecosystem. Ecosystems, 12, 562573.Google Scholar
Supplementary material: PDF

Ball and Virginia supplementary material

Appendix A

Download Ball and Virginia supplementary material(PDF)
PDF 624 KB