Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-mqrwx Total loading time: 0.588 Render date: 2022-12-03T23:50:04.697Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Ice sheet mass balance and sea level

Published online by Cambridge University Press:  01 October 2009

I. Allison*
Affiliation:
Australian Antarctic Division and Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, TAS 7050, Australia
R.B. Alley
Affiliation:
Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA 16802, USA
H.A. Fricker
Affiliation:
Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
R.H. Thomas
Affiliation:
EG&G Technical Services Inc., Chincoteague, VA 23336, USA
R.C. Warner
Affiliation:
Australian Antarctic Division and Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, TAS 7050, Australia

Abstract

Determining the mass balance of the Greenland and Antarctic ice sheets (GIS and AIS) has long been a major challenge for polar science. But until recent advances in measurement technology, the uncertainty in ice sheet mass balance estimates was greater than any net contribution to sea level change. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (AR4) was able, for the first time, to conclude that, taken together, the GIS and AIS have probably been contributing to sea level rise over the period 1993–2003 at an average rate estimated at 0.4 mm yr-1. Since the cut-off date for work included in AR4, a number of further studies of the mass balance of GIS and AIS have been made using satellite altimetry, satellite gravity measurements and estimates of mass influx and discharge using a variety of techniques. Overall, these studies reinforce the conclusion that the ice sheets are contributing to present sea level rise, and suggest that the rate of loss from GIS has recently increased. The largest unknown in the projections of sea level rise over the next century is the potential for rapid dynamic collapse of ice sheets.

Type
Review
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Spencer, M.K.Anandakrishnan, S. 2007. Ice-sheet mass balance: assessment, attribution and prognosis. Annals of Glaciology, 46, 17.CrossRefGoogle Scholar
Alley, R.B., Dupont, T.K., Parizek, B.R.Anandakrishnan, S. 2005. Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Annals of Glaciology, 40, 814.CrossRefGoogle Scholar
Arnold, A.Sharp, M. 2002. Flow variability in the Scandinavian ice sheet: modelling the coupling between ice sheet flow and hydrology. Quaternary Science Reviews, 21, 485502.CrossRefGoogle Scholar
Arthern, R.J., Winebrenner, D.P.Vaughan, D.G. 2006. Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. Journal of Geophysical Research, 111, 10.1029/2004JD005667.CrossRefGoogle Scholar
Bell, R.E. 2008. The role of subglacial water in ice-sheet mass balance. Nature Geoscience, 1, 297304.CrossRefGoogle Scholar
Bell, R.E., Studinger, M., Shuman, C.A., Fahnestock, M.A.Joughin, I. 2007. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature, 445, 904907.CrossRefGoogle ScholarPubMed
Bentley, C.R., Thomas, R.H.Velicogna, I. 2007. Ice sheets. In Global outlook for ice and snow. Nairobi: United Nations Environment Programme, 99113.Google Scholar
Box, J.E., Bromwich, D.H., Veenhuis, B.A., Bai, L.S., Stroeve, J.C., Rogers, J.C., Steffen, K., Haran, T.Wang, S.H. 2006. Greenland ice sheet surface mass balance variability (1988–2004) from calibrated Polar MM5 output. Journal of Climate, 19, 27832800.CrossRefGoogle Scholar
Budd, W.F.Warner, R.C. 1996. A computer scheme for rapid calculations of balance flux distributions. Annals of Glaciology, 23, 2127.CrossRefGoogle Scholar
Cazenave, A., Dominh, K., Guinehut, S., Berthier, E., Llovel, W., Ramillien, G., Ablain, M.Larnicol, G. 2009. Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and ARGO. Global and Planetary Change, 65, 8388.CrossRefGoogle Scholar
Chen, J., Wilson, C.Tapley, B. 2006a. Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science, 313, 1958.CrossRefGoogle ScholarPubMed
Chen, J., Wilson, C., Blankenship, D.Tapley, B. 2006b. Antarctic mass rates from GRACE. Geophysical Research Letters, 33, L11502.CrossRefGoogle Scholar
Church, J.A.White, N.J. 2006. A 20th century acceleration in global sea level rise. Geophysical Research Letters, 33, 10.1029/2005GL024826.CrossRefGoogle Scholar
Church, J.A., White, N.J., Aarup, T., Wilson, W.S., Woodworth, P.L., Domingues, C.M., Hunter, J.R.Lambeck, K. 2008. Understanding global sea levels: past, present and future. Sustainability Science, 3, 10.1007/s11625-008-0042-4.CrossRefGoogle Scholar
Cook, A.J., Fox, A.J., Vaughan, D.G.Ferrigno, J.G. 2005. Retreating glacier-fronts on the Antarctic Peninsula over the last 50 years. Science, 308, 541544.CrossRefGoogle Scholar
Csatho, B., Schenk, T., van der Veen, C.J.Krabill, W.B. 2008. Intermittent thinning of Jakobshavn Isbræ, west Greenland, since the Little Ice Age. Journal of Glaciology, 54, 131144.CrossRefGoogle Scholar
Cuffey, K.M.Marshall, S.J. 2000. Substantial contribution to sea level rise during the last interglacial from the Greenland Ice Sheet. Nature, 404, 591594.CrossRefGoogle ScholarPubMed
Das, S.B., Joughin, I., Behn, M.D., Howat, I.M., King, M.A., Lizarralde, D.Bhatia, M.P. 2008. Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science, 320, 778781.CrossRefGoogle ScholarPubMed
Davis, C.H., Li, Y., McConnell, J.R., Frey, M.M.Hanna, E. 2005. Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea level rise. Science, 308, 18981901.CrossRefGoogle ScholarPubMed
Domingues, C.M., Church, J.A., White, N.J., Gleckler, P.J., Wijffels, S.E., Barker, P.M.Dunn, J.R. 2008. Improved estimates of upper-ocean warming and multi-decadal sea level rise. Nature, 453, 10.1038/nature07080.CrossRefGoogle ScholarPubMed
Drewry, D.J., Jordan, S.R.Jankowski, E. 1981. Measured properties of the Antarctic ice sheet: surface configuration, ice thickness, volume and bedrock characteristics. Annals of Glaciology, 3, 8391.CrossRefGoogle Scholar
Dupont, T.K.Alley, R.B. 2005. Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophysical Research Letters, 32, 10.1029/2004GL022024.CrossRefGoogle Scholar
Ekstrom, G., Nettles, M.Tsai, V.C. 2006. Seasonality and increasing frequency of Greenland glacial earthquakes. Science, 311, 1756.CrossRefGoogle ScholarPubMed
Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K.Chappell, J. 1998. Refining the eustatic sea level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth and Planetary Science Letters, 163, 327342.CrossRefGoogle Scholar
Fricker, H.A., Scambos, T., Bindschadler, R.Padman, L. 2007. An active subglacial water system in West Antarctica mapped from space. Science, 315, 15441548.CrossRefGoogle ScholarPubMed
Gleick, P.H. 1996. Water resources. In Schneider, S.H., ed. Encyclopedia of climate and weather, vol. 2. New York: Oxford University Press, 817823.Google Scholar
Hall, D.K., Williams, R.S., Luthcke, S.B.Digirolamo, N.E. 2008. Greenland ice sheet surface temperature, melt and mass loss: 2000–06. Journal of Glaciology, 54, 8193.CrossRefGoogle Scholar
Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., Irvine-Fynn, T., Wise, S.Griffiths, M. 2008. Increased runoff from melt from the Greenland Ice Sheet: a response to global warming. Journal of Climate, 21, 331341.CrossRefGoogle Scholar
Hansen, J.E. 2007. Scientific reticence and sea level rise. Environmental Research Letters, 2, 16.CrossRefGoogle Scholar
Helsen, M.M., van den Broeke, M.R., van de Wal, R.S.W., van de Berg, W.J., van Meijgaard, E., Davis, C.H., Li, Y.H.Goodwin, I. 2008. Elevation changes in Antarctica mainly determined by accumulation variability. Science, 320, 16261629.CrossRefGoogle ScholarPubMed
Holland, P.R., Jenkins, A.Holland, D.M. 2008a. The response of ice shelf basal melting to variations in ocean temperature. Journal of Climate, 21, 25582572.CrossRefGoogle Scholar
Holland, D.M., Thomas, R.H., De Young, B., Ribergaard, M.H.Lyberth, B. 2008b. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geoscience, 1, 659664.CrossRefGoogle Scholar
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K.Johnson, C.A., eds. 2001. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 892 pp.Google Scholar
Howat, I.M., Joughin, I.Scambos, T.A. 2007. Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315, 1559.CrossRefGoogle ScholarPubMed
Howat, I.M., Smith, B.E., Joughin, I.Scambos, T.A. 2008. Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophysical Research Letters, 35, 10.1029/2008GL034496.CrossRefGoogle Scholar
Hughes, T. 1973. Is the West Antarctic ice sheet disintegrating? Journal of Geophysical Research, 78, 78847910.CrossRefGoogle Scholar
Humbert, A.Braun, M. 2008. The Wilkins Ice Shelf - break-up along failure zones. Journal of Glaciology, 54, 943944.CrossRefGoogle Scholar
IPCC. 2007. Summary for policymakers. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M.&Miller, H.L., eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 118.CrossRefGoogle Scholar
Jacka, T.H. & the ISMASS Committee. 2004. Recommendations for the collection and synthesis of Antarctic Ice Sheet mass balance data. Global and Planetary Change, 42, 115.Google Scholar
Jezek, K.C. 2008. The RADARSAT-1 Antarctic Mapping Project. BPRC Report No 22. Columbus, OH: Byrd Polar Research Center, The Ohio State University, 64 pp.Google Scholar
Joughin, I., Abdalati, W.Fahnestock, M. 2004. Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature, 432, 608610.CrossRefGoogle ScholarPubMed
Joughin, I., Rignot, E., Rosanova, C.E., Lucchitta, B.K.Bohlander, J. 2003. Timing of recent accelerations of Pine Island Glacier, Antarctica. Geophysical Research Letters, 30, 10.1029/2003GL017609.CrossRefGoogle Scholar
Joughin, I., Das, S.B., King, M.A., Smith, B.E., Howat, I.M.Moon, T. 2008. Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320, 781783.CrossRefGoogle ScholarPubMed
Kamb, B. 2001. The lubricating basal zone of the West Antarctic ice streams. Antarctic Research Series, 77, 157199.Google Scholar
Krabill, W., Abdalati, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R., Wright, W.Yungel, J. 2000. Greenland Ice Sheet: high-elevation balance and peripheral thinning. Science, 289, 428430.CrossRefGoogle ScholarPubMed
Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho, B., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R.Yungel, J. 2004. Greenland Ice Sheet: increased coastal thinning. Geophysical Research Letters, 31, L24402.CrossRefGoogle Scholar
Lemke, P., Ren, J., Alley, R.B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R.H.Zhang, T. 2007. Observations: changes in snow, ice and frozen ground. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M.&Miller, H.L., eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 339383.Google Scholar
Lhomme, N., Clarke, G.K.C.Marshall, S.J. 2005. Tracer transport in the Greenland Ice Sheet - constraints on ice cores and glacial history. Quaternary Science Reviews, 24, 173194.CrossRefGoogle Scholar
Luthcke, S.B., Zwally, H.J., Abdalati, W., Rowlands, D.D., Ray, R.D., Nerem, R.S., Lemoine, F.G., McCarthy, J.J.Chinn, D.S. 2006. Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314, 1286.CrossRefGoogle ScholarPubMed
Lythe, M., Vaughan, D.G. & the BEDMAP Consortium. 2001. BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research, 106, 1133511351.CrossRefGoogle Scholar
Meier, M.F., Dyurgerov, M.B., Rick, U.K., O’Neel, S., Pfeffer, W.T., Anderson, R.S., Anderson, S.P.Glazovsky, A.F. 2007. Glaciers dominate eustatic sea level rise in the 21st century. Science, 317, 10641067.CrossRefGoogle ScholarPubMed
Mercer, J. 1978. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature, 271, 321325.CrossRefGoogle Scholar
Meredith, M.P.King, J.C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32, 10.1029/2005GL024042.CrossRefGoogle Scholar
Monaghan, A.J. & 15 others. 2006. Insignificant change in Antarctic snowfall since the International Geophysical Year. Science, 313, 827831.CrossRefGoogle ScholarPubMed
Nakicenovic, N.Swart, R., eds. 2000. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 570 pp.Google Scholar
Nicholls, R.J., Wong, P.P., Burkett, V.R., Codignotto, J.O., Hay, J.E., McLean, R.F., Ragoonaden, S.Woodroffe, C.D. 2007. Coastal systems and low-lying areas. In McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J.&White, K.S.,eds. 2001. Climate change 2001: impacts, adaptation and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 315356.Google Scholar
Nick, F.M., Vieli, A., Howat, I.M.Joughin, I. 2009. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geoscience, 2, 110114.CrossRefGoogle Scholar
Oerlemans, J., Dahl-Jensen, D.Masson-Delmotte, V. 2006. Ice sheets and sea level. Nature, 313, 10431044.Google ScholarPubMed
Otto-Bliesner, B.L., Marsall, S.J., Overpeck, J.T., Miller, G.H., Hu, A. & CAPE Last Interglacial Project members. 2006. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science, 311, 17511753.CrossRefGoogle ScholarPubMed
Overpeck, J.T., Otto-Bliesner, B.L., Miller, G.H., Muhs, D.R., Alley, R.B.Kiehl, J.T. 2006. Paleoclimatic evidence for future ice-sheet instability and rapid sea level rise. Science, 311, 17471750.CrossRefGoogle ScholarPubMed
Parizek, B.R.Alley, R.B. 2004. Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations. Quaternary Science Reviews, 23, 10131027.CrossRefGoogle Scholar
Payne, A.J., Holland, P.R., Shepherd, A.P., Rutt, I.C., Jenkins, A.Joughin, I. 2007. Numerical modeling of ocean-ice interactions under Pine Island Bay’s ice shelf. Journal of Geophysical Research, 112, 10.1029/2006JC003733.CrossRefGoogle Scholar
Pfeffer, W.T., Harper, J.T.O’Neel, S. 2008. Kinematic constraints on glacier contributions to 21st-century sea level rise. Science, 321, 13401343.CrossRefGoogle ScholarPubMed
Price, S.F., Payne, A.J., Catania, G.A.Neumann, T.A. 2008. Seasonal acceleration of inland ice via longitudinal coupling to marginal ice. Journal of Glaciology, 54, 213219.CrossRefGoogle Scholar
Pritchard, H.D.Vaughan, D.G. 2007. Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. Journal of Geophysical Research, 112, 10.1029/2006JF000597.CrossRefGoogle Scholar
Ramillien, G., Lombard, A., Cazenave, A., Ivins, E.R., Llubes, M., Remy, F.Biancale, R. 2006. Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global and Planetary Change, 53, 198208.CrossRefGoogle Scholar
Rahmstorf, S. 2007. A semi-empirical approach to projecting future sea level rise. Science, 315, 368.CrossRefGoogle ScholarPubMed
Rahmstorf, S., Cazenave, A., Church, J.A., Hansen, J.E., Keeling, R.F., Parker, D.E.Somerville, R.C.J. 2007. Recent climate observations compared to projections. Science, 316, 709.CrossRefGoogle ScholarPubMed
Rignot, E. 2006. Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philosophical Transactions of the Royal Society of London, A364, 16371655.CrossRefGoogle Scholar
Rignot, E.Jacobs, S. 2002. Rapid bottom melting widespread near Antarctic Ice Sheet grounding lines. Science, 296, 20202023.CrossRefGoogle ScholarPubMed
Rignot, E.Kanagaratnam, P. 2006. Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986990.CrossRefGoogle ScholarPubMed
Rignot, E.Thomas, R.H. 2002. Mass balance of polar ice sheets. Science, 297, 15021506.CrossRefGoogle ScholarPubMed
Rignot, E., Box, J.E., Burgess, E.Hanna, E. 2008a. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophysical Research Letters, 35, 10.1029/2008GL035417.CrossRefGoogle Scholar
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A.Thomas, R. 2004. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophysical Research Letters, 31, 10.1029/2004GL020697.CrossRefGoogle Scholar
Rignot, E., Bamber, J., van den Broeke, M., Davis, C., Li, Y., van de Berg, W.van Meijgaard, E. 2008b. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, 1, 106110.CrossRefGoogle Scholar
Rohling, E.J., Grant, K., Hemleben, C.H., Siddall, M., Hoogakker, B.A.A., Bolshaw, M.Kucera, M. 2008. High rates of sea level rise during the last interglacial period. Nature Geoscience, 1, 3842.CrossRefGoogle Scholar
Scambos, T., Bohlander, J.A., Shuman, C.A.Skvarca, P. 2004. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters, 31, 10.1029/2004GL020670.CrossRefGoogle Scholar
Scambos, T., Hulbe, C.Fahnestock, M. 2003. Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarctic Research Series, 79, 7992.Google Scholar
Scambos, T., Fricker, H.A., Liu, C.-C., Bohlander, J.A., Fastook, J., Sargent, A., Massom, R.Wu, A.-M. 2009. Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins Ice Shelf break-ups, accepted to. Earth and Planetary Science Letters, 280, 5160.CrossRefGoogle Scholar
Shepherd, A., Wingham, D.Rignot, E. 2004. Warm ocean is eroding West Antarctic ice sheet. Geophysical Research Letters, 31, 14.CrossRefGoogle Scholar
Shepherd, A.Wingham, D. 2007. Recent sea level contributions of the Antarctic and Greenland ice sheets. Science, 315, 15291532.CrossRefGoogle ScholarPubMed
Siegert, M.J.Bamber, J.L. 2000. Subglacial water at the heads of Antarctic ice stream tributaries. Journal of Glaciology, 46, 702703.CrossRefGoogle Scholar
Siegert, M.J., Carter, S., Tabacco, I., Popov, S.Blankenship, D. 2005. A revised inventory of Antarctic subglacial lakes. Antarctic Science, 17, 453460.CrossRefGoogle Scholar
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M.Miller, H.L. eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 996 pp.Google Scholar
Stearns, L.A., Smith, B.E.Hamilton, G.S. 2008. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nature Geoscience, 1, 827831.CrossRefGoogle Scholar
Thomas, R., Davis, C., Frederick, E., Krabill, W., Li, Y., Manizade, S.Martin, C. 2008. A comparison of Greenland ice-sheet volume changes derived from altimetry measurements. Journal of Glaciology, 54, 203212.CrossRefGoogle Scholar
Thomas, R., Frederick, E., Krabill, W., Manizade, S.Martin, C. 2006. Progressive increase in ice loss from Greenland. Geophysical Research Letters, 33, 10.1029/2006GL026075.CrossRefGoogle Scholar
Thomas, R.H. 1977. Calving bay dynamics and ice sheet retreat up the St. Lawrence valley system. Gèographie Physique et Quaternaire, 31, 347356.CrossRefGoogle Scholar
Thomas, R.H. 1979. The dynamics of marine ice sheets. Journal of Glaciology, 24, 167177.CrossRefGoogle Scholar
Thomas, R.H. 2004. Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbrae, Greenland. Journal of Glaciology, 50, 5766.CrossRefGoogle Scholar
Thomas, R.H., Abdalati, W., Frederick, E., Krabill, W., Manizade, S.Steffen, K. 2003. Investigation of surface melting and dynamic thinning on Jakobshavn Isbrae, Greenland. Journal of Glaciology, 49, 231239.CrossRefGoogle Scholar
Truffer, M.Fahnestock, M. 2007. Rethinking ice sheet timescales. Science, 315, 15081510.CrossRefGoogle Scholar
van de Berg, W.J., van den Broeke, M.R., Reijmer, C.H.van Meijgaard, E. 2006. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. Journal of Geophysical Research, 111, 10.1029/2005JD006495.CrossRefGoogle Scholar
Vaughan, D.Arthern, R. 2007. Why is it so hard to predict the future of the ice sheets? Science, 315, 15031504.CrossRefGoogle ScholarPubMed
Vaughan, D.G., Bamber, J.L., Giovinetto, M., Russell, J.Cooper, A.P.R. 1999. Reassessment of net surface mass balance in Antarctica. Journal of Climate, 12, 933946.2.0.CO;2>CrossRefGoogle Scholar
Velicogna, I.Wahr, J. 2005. Greenland mass balance from GRACE. Geophysical Research Letters, 32, 10.1029/2005GL023955.Google Scholar
Velicogna, I.Wahr, J. 2006a. Acceleration of Greenland ice mass loss in spring 2004. Nature, 443, 329331.CrossRefGoogle ScholarPubMed
Velicogna, I.Wahr, J. 2006b. Measurements of time variable gravity show mass loss in Antarctica. Science, 311, 17541756.CrossRefGoogle ScholarPubMed
Weertman, J. 1976. Glaciology’s grand unsolved problem. Nature, 260, 284286.CrossRefGoogle Scholar
Williams, M.J.M., Warner, R.Budd, W.F. 2002. Sensitivity of the Amery Ice Shelf, Antarctica, to changes in the climate of the Southern Ocean. Journal of Climate, 15, 27402757.2.0.CO;2>CrossRefGoogle Scholar
Wingham, D.J., Siegert, M.J., Shepherd, A.P.Muir, A.S. 2006a. Rapid discharge connects Antarctic subglacial lakes. Nature, 440, 10331036.CrossRefGoogle ScholarPubMed
Wingham, D., Shepherd, A., Muir, A.Marshall, G. 2006b. Mass balance of the Antarctic ice sheet. Philosophical Transactions of the Royal Society, A364, 16271635.CrossRefGoogle Scholar
Wouters, B., Chambers, D.Schrama, E.J.O. 2008. GRACE observes small-scale mass loss in Greenland. Geophysical Research Letters, 35, 10.1029/2008GL034816.CrossRefGoogle Scholar
Zwally, H.J., Abdalati, W., Herring, T., Larson, K., Saba, J.Steffen, K. 2002. Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297, 218222.CrossRefGoogle ScholarPubMed
Zwally, H.J., Giovinetto, M.B., Li, J., Cornejo, H.G., Beckley, M.A., Brenner, A.C., Saba, J.L.Yi, D. 2005. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea level rise: 1992–2002. Journal of Glaciology, 51, 509527.CrossRefGoogle Scholar
63
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ice sheet mass balance and sea level
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Ice sheet mass balance and sea level
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Ice sheet mass balance and sea level
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *