Hostname: page-component-5b777bbd6c-cp4x8 Total loading time: 0 Render date: 2025-06-20T10:59:33.275Z Has data issue: false hasContentIssue false

Identification of mobile resistome in soils exposed to different impacts in Fildes Peninsula, King George Island

Published online by Cambridge University Press:  02 December 2024

Matías Giménez*
Affiliation:
Molecular Microbiology Laboratory, BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay Center for Innovation in Epidemiological Surveillance, Institut Pasteur Montevideo, Montevideo, Uruguay
Gastón Azziz
Affiliation:
Molecular Microbiology Laboratory, BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay Microbiology Laboratory, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
Silvia Batista
Affiliation:
Molecular Microbiology Laboratory, BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
*
Corresponding author: Matías Giménez; email: mgimenez@pasteur.edu.uy

Abstract

Antimicrobial resistance is one of the most important global health issues identified in recent decades. Different approaches have been used to establish the presence and abundance of antimicrobial resistance genes (ARGEs) in the environment. In this study, we analysed soil samples from Fildes Peninsula (King George Island, Maritime Antarctica) exposed to human and bird impacts. The objective of the work was to identify ARGEs in the samples and to evaluate whether these genes were located in plasmids using two different strategies. A metagenomic analysis was employed to identify ARGEs according to the CARD database and to determine whether they were associated with plasmidic sequences. The analysis showed that the site exposed to high anthropogenic activity had a higher number of ARGEs compared to other sites. A large percentage of those ARGEs (19.4%) was located in plasmidic contigs. We also assessed replicon mobilization using microbial communities from these soil samples as donors through an exogenous plasmid isolation method. In this case, we could recover plasmids with ARGEs in a Tcr transconjugant clone. Although they could not be fully assembled, we could detect broad host range IncP1 and IncQ plasmid sequences. Our results indicate that sewage-impacted soils could be hotspots for the spread of ARGEs into the Antarctic environment.

Type
Biological Sciences
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Acevedo-Barrios, R., Rubiano-Labrador, C., Navarro-Narvaez, D., Escobar-Galarza, J., González, D., Mira, S. & Miranda-Castro, W. 2022. Perchlorate-reducing bacteria from Antarctic marine sediments. Environmental Monitoring and Assessment, 194, 113.CrossRefGoogle ScholarPubMed
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215, 403410.CrossRefGoogle ScholarPubMed
Andrews, S. 2010. FastQC: A Quality Control Tool for High Throughput Sequence Data. Retrieved from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Google Scholar
Aslam, B., Khurshid, M., Arshad, M.I., Muzammil, S., Rasool, M., Yasmeen, N., et al. 2021. Antibiotic resistance: One Health One World outlook. Frontiers in Cellular and Infection Microbiology, 11, 771510.CrossRefGoogle ScholarPubMed
Azziz, G., Giménez, M., Romero, H., Valdespino-Castillo, P.M., Falcón, L.I., Ruberto, L.A., et al. 2019. Detection of presumed genes encoding beta-lactamases by sequence based screening of metagenomes derived from Antarctic microbial mats. Frontiers of Environmental Science & Engineering, 13, 112.CrossRefGoogle Scholar
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19, 455477.CrossRefGoogle ScholarPubMed
Berendonk, T.U., Manaia, C.M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F. & Martinez, J.L. 2015. Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 13, 310317.CrossRefGoogle ScholarPubMed
Bolger, A.M., Lohse, M. & Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 21142120.CrossRefGoogle ScholarPubMed
Brown, C.J., Sen, D., Yano, H., Bauer, M.L., Rogers, L.M., Van der Auwera, G.A. & Top, E.M. 2013. Diverse broad-host-range plasmids from freshwater carry few accessory genes. Applied and Environmental Microbiology, 79, 76847695.CrossRefGoogle ScholarPubMed
Castro, M.F., Neves, J.C., Francelino, M.R., Schaefer, C.E.G. & Oliveira, T.S. 2021. Seabirds enrich Antarctic soil with trace metals in organic fractions. Science of the Total Environment, 785, 147271.CrossRefGoogle ScholarPubMed
Cerdà-Cuéllar, M., Moré, E., Ayats, T., Aguilera, M., Muñoz-González, S., Antilles, N., et al. 2019. Do humans spread zoonotic enteric bacteria in Antarctica? Science of the Total Environment, 654, 10.1016/j.scitotenv.2018.10.272.CrossRefGoogle ScholarPubMed
Che, Y., Yang, Y., Xu, X., Břinda, K., Polz, M.F., Hanage, W.P. & Zhang, T. 2021. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proceedings of the National Academy of Sciences of the United States of America, 118, e2008731118.CrossRefGoogle ScholarPubMed
Cohen, O., Gophna, U. & Pupko, T. 2011. The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Molecular Biology and Evolution, 28, 14811489.CrossRefGoogle ScholarPubMed
Convey, P. 2011. Antarctic terrestrial biodiversity in a changing world. Polar Biology, 34, 16291641.CrossRefGoogle Scholar
Crone, S., Vives-Flórez, M., Kvich, L., Saunders, A.M., Malone, M., Nicolaisen, M.H., et al. 2020. The environmental occurrence of Pseudomonas aeruginosa. APMIS, 128, 10.1111/apm.13010.CrossRefGoogle ScholarPubMed
D'Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W., Schwarz, C., et al. 2011. Antibiotic resistance is ancient. Nature, 31, 10.1038/nature10388.Google Scholar
Delgado-Blas, J.F., Ovejero, C.M., David, S., Montero, N., Calero-Caceres, W., Garcillan-Barcia, M.P., et al. 2021. Population genomics and antimicrobial resistance dynamics of Escherichia coli in wastewater and river environments. Communications Biology, 4, 10.1038/s42003-021-01949-x.CrossRefGoogle ScholarPubMed
Di Cesare, A., Eckert, E.M., D'Urso, S., Bertoni, R., Gillan, D.C., Wattiez, R. & Corno, G. 2016. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Research, 94, 208214.CrossRefGoogle ScholarPubMed
Giménez, M., Ferrés, I. & Iraola, G. 2022. Improved detection and classification of plasmids from circularized and fragmented assemblies. Biorxiv, 10.1101/2022.08.04.502827.Google Scholar
Guo, Y., Wang, N., Li, G., Rosas, G., Zang, J., Ma, Y. & Cao, H. 2018. Direct and indirect effects of penguin feces on microbiomes in Antarctic ornithogenic soils. Frontiers in Microbiology, 9, 552.CrossRefGoogle ScholarPubMed
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29, 10.1093/bioinformatics/btt086.CrossRefGoogle ScholarPubMed
Hernández, F., Calısto-Ulloa, N., Gómez-Fuentes, C., Gómez, M., Ferrer, J., González-Rocha, G. & Montory, M. 2019. Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic. Journal of Hazardous Materials, 363, 447456.CrossRefGoogle ScholarPubMed
Hernando-Amado, S., Coque, T.M., Baquero, F. & Martínez, J.L. 2019. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology, 4, 14321442.CrossRefGoogle ScholarPubMed
Herrera, L.M., Braña, V., Fraguas, L.F. & Castro-Sowinski, S. 2019. Characterization of the cellulase-secretome produced by the Antarctic bacterium Flavobacterium sp. AUG42. Microbiological Research, 223, 1321.CrossRefGoogle ScholarPubMed
Heuer, H., Binh, C.T., Jechalke, S., Kopmann, C., Zimmerling, U., Krögerrecklenfort, E., et al. 2012. IncP-1ε plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Frontiers in Microbiology, 18, 10.3389/fmicb.2012.00002.Google Scholar
Hwengwere, K., Paramel Nair, H., Hughes, K.A., Peck, L.S., Clark, M.S. & Walker, C.A. 2022. Antimicrobial resistance in Antarctica: is it still a pristine environment? Microbiome, 10, 113.CrossRefGoogle Scholar
Jia, B., Raphenya, A.R., Alcock, B., Waglechner, N., Guo, P., Tsang, K.K., et al. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research, 45, 10.1093/nar/gkw1004.CrossRefGoogle ScholarPubMed
Klümper, U., Riber, L., Dechesne, A., Sannazzarro, A., Hansen, L.H., Sørensen, S.J. & Smets, B.F. 2015. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME Journal, 9, 10.1038/ismej.2014.191.CrossRefGoogle ScholarPubMed
Kopmann, C., Jechalke, S., Rosendahl, I., Groeneweg, J., Krögerrecklenfort, E., Zimmerling, U., et al. 2013. Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiology Ecology, 83, 10.1111/j.1574-6941.2012.01458.x.CrossRefGoogle Scholar
Langmead, B. & Salzberg, S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 10.1038/nmeth.1923.CrossRefGoogle ScholarPubMed
Li, H. & Durbin, R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589595.CrossRefGoogle ScholarPubMed
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. 2009. The sequence alignment/map (SAM) format and SAM tools. Bioinformatics, 25, 20782079.CrossRefGoogle Scholar
Martínez, J., Baquero, F. & Andersson, D. 2007. Predicting antibiotic resistance. Nature Reviews Microbiology, 5, 10.1038/nrmicro1796.CrossRefGoogle ScholarPubMed
Martínez, J., Coque, T. & Baquero, F. 2015. What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology, 13, 10.1038/nrmicro3399.CrossRefGoogle ScholarPubMed
Norman, A., Hansen, L.H. & Sørensen, S.J. 2009. Conjugative plasmids: vessels of the communal gene pool. Philosophical Transactions of the Royal Society B: Biological Sciences, 12, 10.1098/rstb.2009.0037.Google Scholar
O'Neill, J. 2016. Tackling drug-resistant infections globally: final report and recommendations. The Review on Antimicrobial Resistance. London: Government of the United Kingdom. Retrieved from https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdfGoogle Scholar
Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E. & Larsson, D.G.J. 2014. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Research, 42, 10.1093/nar/gkt1252.CrossRefGoogle ScholarPubMed
Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P. & Tyson, G.W. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25, 10431055.CrossRefGoogle ScholarPubMed
Paun, V.I., Banciu, R.M., Lavin, P., Vasilescu, A., Fanjul-Bolado, P. & Purcarea. C. 2022. Antarctic aldehyde dehydrogenase from Flavobacterium PL002 as a potent catalyst for acetaldehyde determination in wine. Science Reports, 12, 10.1038/s41598-022-22289-8.Google ScholarPubMed
Power, M.L., Samuel, A., Smith, J.J., Stark, J.S., Gillings, M.R. & Gordon, D.M. 2016. Escherichia coli out in the cold: dissemination of human-derived bacteria into the Antarctic microbiome. Environmental Pollution, 215, 10.1016/j.envpol.2016.04.013.CrossRefGoogle ScholarPubMed
Romaniuk, K., Ciok, A., Decewicz, P., Uhrynowski, W., Budzik, K., Nieckarz, M., et al. 2018. Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biology, 41, 10.1007/s00300-018-2287-4.CrossRefGoogle Scholar
Rozwandowicz, M., Brouwer, M.S.M., Fischer, J., Wagenaar, J.A., Gonzalez-Zorn, B., Guerra, B., et al. 2018. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 73, 10.1093/jac/dkx488.CrossRefGoogle ScholarPubMed
Schlüter, A., Szczepanowski, R., Pühler, A. & Top, E.M. 2007. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiology Reviews, 31, 449477.CrossRefGoogle ScholarPubMed
Scott, L.C., Lee, N. & Aw, T.G. 2020. Antibiotic resistance in minimally human-impacted environments. International Journal of Environmental Research and Public Health, 17, 10.3390/ijerph17113939.CrossRefGoogle ScholarPubMed
Smalla, K., Heuer, H., Götz, A., Niemeyer, D., Krögerrecklenfort, E. & Tietze, E. 2000. Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Applied and Environmental Microbiology, 66, 48544862.CrossRefGoogle ScholarPubMed
Stark, J.S., Smith, J., King, C.K., Lindsay, M., Stark, S., Palmer, A.S., et al. 2015. Physical, chemical, biological and ecotoxicological properties of wastewater discharged from Davis Station, Antarctica, Cold Regions Science and Technology, 113, 10.1016/j.coldregions.2015.02.006.CrossRefGoogle Scholar
Struve, C. & Krogfelt, K.A. 2004. Pathogenic potential of environmental Klebsiella pneumoniae isolates. Environmental Microbiology, 6, 584590.CrossRefGoogle ScholarPubMed
Tin, T., Fleming, Z., Hughes, K., Ainley, D., Convey, P., Moreno, C. & Snape, I. 2009. Impacts of local human activities on the Antarctic environment. Antarctic Science, 21, 10.1017/S0954102009001722CrossRefGoogle Scholar
Tort, L.F.L., Iglesias, K., Bueno, C., Lizasoain, A., Salvo, M., Cristina, J., et al. 2017. Wastewater contamination in Antarctic melt-water streams evidenced by virological and organic molecular markers. Science of the Total Environment, 609, 10.1016/j.scitotenv.2017.07.127.CrossRefGoogle ScholarPubMed
Uritskiy, G.V., DiRuggiero, J. & Taylor, J. 2018. MetaWRAP - a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome, 6, 113.CrossRefGoogle ScholarPubMed
Van Elsas, J.D., Semenov, A.V., Costa, R. & Trevors, J.T. 2011. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME Journal, 5, 173183.CrossRefGoogle ScholarPubMed
Vassallo, A., Kett, S., Purchase, D. & Marvasi, M. 2021. Antibiotic-resistant genes and bacteria as evolving contaminants of emerging concerns (e-CEC): is it time to include evolution in risk assessment? Antibiotics, 10, 10.3390/antibiotics10091066.CrossRefGoogle ScholarPubMed
Xi, C., Lambrecht, M., Vanderleyden, J. & Michiels, J. 1999. Bi-functional gfp and gusA containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. Journal of Microbiological Methods, 35, 8592.CrossRefGoogle ScholarPubMed
Zeng, Y.-X., Li, H.-R., Han, W. & Luo, W. 2021. Comparison of gut microbiota between gentoo and Adélie penguins breeding sympatrically on Antarctic Ardley Island as revealed by fecal DNA sequencing. Diversity, 13, 10.3390/d13100500.CrossRefGoogle Scholar
Supplementary material: File

Giménez et al. supplementary material

Giménez et al. supplementary material
Download Giménez et al. supplementary material(File)
File 2.3 MB