Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-bmnx5 Total loading time: 0.377 Render date: 2021-04-19T15:33:50.008Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The influence of Totten Glacier on the Late Cenozoic sedimentary record

Published online by Cambridge University Press:  25 March 2020

Federica Donda
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010, Sgonico, Trieste, Italy
German Leitchenkov
Affiliation:
The All-Russia Scientific Research Institute for Geology and Mineral Resources of the Ocean, St Petersburg, Russia Institute of Earth Sciences, St Petersburg State University, St Petersburg, Russia
Giuliano Brancolini
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010, Sgonico, Trieste, Italy
Roberto Romeo
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010, Sgonico, Trieste, Italy
Laura De Santis
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010, Sgonico, Trieste, Italy
Carlota Escutia
Affiliation:
Instituto Andaluz de Ciencias de la Tierra CSIC - Universidad de Granada, Avda de las Palmeras 4, 18100 Armilla (Granada), Spain
Philip O'Brien
Affiliation:
Macquarie University, Sydney, Australia
Leanne Armand
Affiliation:
The Australian National University, Acton, ACT, Australia
Andrea Caburlotto
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010, Sgonico, Trieste, Italy
Diego Cotterle
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010, Sgonico, Trieste, Italy
Corresponding
E-mail address:

Abstract

Analysis of multichannel seismic profiles collected on the continental rise off the Sabrina Coast, East Antarctica, has allowed the determination of the acoustic features that are indicative of major evolution steps of the East Antarctic Ice Sheet (EAIS) and highlights the role of meltwater that originated from Totten Glacier in shaping the margin architecture. The arrival of marine-terminating glaciers into the coastal region was recorded by an enhanced sediment input on the continental rise and the nucleation of channel-levees. Downslope sedimentary processes were dominant throughout the Late Cenozoic, testifying to the progressive growth of a highly dynamic, temperate ice sheet on the continent. The last evolutionary step marks the transition to when a full polar glacial regime occurred. The development of a prograding wedge with steeply dipping foresets on the continental shelf and slope exemplifies sedimentation at this time. Other sub-sea-floor observations indicate that downslope fluxes, triggered by glacial meltwater, were still able to deeply erode and deliver sediments to the rise area. This study's findings have led to the identification of expanded and well-preserved sedimentary successions, which we suggest should be considered as priority targets for future International Ocean Discovery Program deep drilling due to the sensitivity of the ice sheet in this area.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below.

References

Aitken, A.R.A., Roberts, J.L., van Ommen, T.D., Young, D.A, Golledge, N.R., Greenbaum, J.S., et al. 2016. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature, 533, 385389.CrossRefGoogle ScholarPubMed
Anderson, J.B., Warny, S., Askin, R.A., Wellner, J.S., Bohaty, S.M., Kirschner, A.E., et al. 2011. Progressive Cenozoic cooling and the demise of Antarctica's last refugium. Proceedings of the National Academy of Sciences of the United States of America, 108(28), 11 35611 360.CrossRefGoogle ScholarPubMed
Cook, C.P., van de Flierdt, T., Williams, T., Hemming, S.R., Iwai, M., Kobayashi, M., et al. 2013. Dynamic behavior of the East Antarctic Ice Sheet during Pliocene warmth. Nature Geoscience, 6, 10.1038/ngeo1889.CrossRefGoogle Scholar
Cooper, A.K. & O'Brien, P.E. 2004. Leg 188 synthesis: transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. Retrieved from: http://www-odp.tamu.edu/publications/188_SR/synth/synth.htm (accessed February 2020).CrossRefGoogle Scholar
Cooper, A.K., Brancolini, G., Escutia, C., Kristoffersen, Y., Larter, R.D., Leitchenkov, G., et al. 2009. Cenozoic climate history from seismic reflection and drilling studies on the Antarctic continental margin. In Florindo, F. & Siegert, M.J., eds. Antarctic climate evolution. Amsterdam: Elsevier, 115228.Google Scholar
Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H. & Backman, J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calref compensation in the Pacific Ocean. Nature, 433, 5357.CrossRefGoogle ScholarPubMed
DeConto, R.M. & Pollard, D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421, 245249.CrossRefGoogle ScholarPubMed
DeConto, R.M. & Pollard, D. 2016. Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597.CrossRefGoogle ScholarPubMed
De Santis, L., Brancolini, G. & Donda, F. 2003. Seismo-stratigraphic analysis of the Wilkes Land continental margin (East Antarctica): influence of glacially-driven processes on the Cenozoic deposition. Deep-Sea Research II, 50, 15631594.CrossRefGoogle Scholar
Donda, F., Brancolini, G., O'Brien, P.E., de Santis, L. & Escutia, C. 2007. Sedimentary processes in the Wilkes Land margin: a record of the Cenozoic East Antarctic Ice Sheet evolution. Journal of the Geological Society of London, 164, 243256.CrossRefGoogle Scholar
Donda, F., O'Brien, P.E., de Santis, L., Rebesco, M. & Brancolini, G. 2008. Mass wasting processes in the Western Wilkes Land margin: implications for the East Antarctic glacial history, Paleogeography, Paleoclimatology, Palaecology, 260, 7791.CrossRefGoogle Scholar
Dutton, A., Carlson, A.E., Long, A.J., Milne, G.A., Clark, P.U., deConto, R., et al. 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science, 349, 10.1126/science.aaa4019.CrossRefGoogle ScholarPubMed
Escutia, C. & Brinkhuis, H. 2014. From greenhouse to icehouse at the Wilkes Land Antarctic margin: IODP Expedition 318 synthesis of results. Developments in Marine Geology, 7, 295328.CrossRefGoogle Scholar
Escutia, C., Brinkhuis, H., Klaus, H. & The IODP Expedition 318 Scientists. 2011. IODP Expedition 318: from greenhouse to icehouse at the Wilkes Land margin. Scientific Drilling, 12, 10.2204/iodp.sd.12.02.2011.CrossRefGoogle Scholar
Etourneau, J., Sgubin, G., Crosta, X., Swingedouw, D., Willmott, V., Barbara, L., et al. 2019. Ocean temperature impact on the ice shelf extent in the eastern Antarctic Peninsula. Nature Communications, 104, 10.1038/s41467-018-08195-6.Google Scholar
Fernandez, R., Gulick, S., Domack, E., Montelli, A., Leventer, A., Shevenell, A., et al. 2018. Past ice streams and ice sheet changes on the continental shelf off the Sabrina Coast, East Antarctica. Geomorphology, 317, 1022.CrossRefGoogle Scholar
Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7, 10.5194/tc-7-375-2013.10.5194/tc-7-375-2013CrossRefGoogle Scholar
Gales, J.A., Larter, R.D., Mitchell, N.C. & Dowdeswell, J.A. 2013. Geomorphic signature of Antarctic submarine gullies: implications for continental slope processes. Marine Geology, 337, 112124.CrossRefGoogle Scholar
Greenbaum, J.S., Blankenship, D.D, Young, D.A., Richter, T.G., Roberts, J.L., Aitken, A.R.A., et al. 2015. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nature Geoscience, 8, 294298.10.1038/ngeo2388CrossRefGoogle Scholar
Gulick, S.P.S., Shevenell, A.E., Montelli, A., Fernandez, R., Smith, C., Warny, S., et al. 2017. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature, 552, 10.1038/nature25026.CrossRefGoogle ScholarPubMed
Gwyther, D.E., Galton-Fenzi, B.K., Hunter, J.R. & Roberts, J.L. 2014. Simulated melt rates for the Totten and Dalton ice shelves. Ocean Science, 10, 267279.CrossRefGoogle Scholar
Huybrechts, P. 1993. Glaciological modelling of the late Cenozoic East Antarctic Ice Sheet: stability or dynamism? Geografiska Annaler Series A - Physical Geography, 4, 221238.CrossRefGoogle Scholar
Kennett, J.P. 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic ocean, and their impact on global paleoceanography. Journal of Geophysical Research, 82, 38433860.CrossRefGoogle Scholar
Khazendar, A., Schodlok, M.P., Fenty, I., Ligtenberg, S.R.M., Rignot, E. & van den Broeke, M.R. 2013. Observed thinning of Totten Glacier is linked to coastal polynya variability. Nature Communications, 4, 10.1038/ncomms3857.CrossRefGoogle ScholarPubMed
Kuvaas, B. & Kristoffersen, Y. 1991. The Crary Fan: a trough-mouth fan on the Weddell Sea continental margin, Antarctica. Marine Geology, 97, 345362.CrossRefGoogle Scholar
Leitchenkov, G.L., Guseva, Y.B. & Gandyukhin, V.V. 2007. Cenozoic environmental changes along the East Antarctic continental margin inferred from regional seismic stratigraphy. In Cooper, A.K., Raymond, C.R. & the 10th ISAES Editorial Team, eds. Antarctica: a keystone in a changing world - proceedings for the 10th International Symposium on Antarctic Earth Sciences. Reston, VA: USGS–U.S. National Academy, 10.3133/of2007-1047.srp005.Google Scholar
Leitchenkov, G.L., Guseva, Y.B., Gandyukhin, V.V. & Ivanov, S.V. 2015. Crustal structure, tectonic evolution and seismic stratigraphy of the southern Indian Ocean. St Petersburg: VNIIOkeangeologia, 198 pp.Google Scholar
Levy, R.H., Meyers, S.R., Naish, T.R., Golledge, N.R., McKay, R.M., Crampton, J.S., et al. 2019. Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nature Geoscience, 12, 10.1038/s41561-018-0284-4.CrossRefGoogle Scholar
Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hedenäs, L., Hemming, S.R., Johnson, J.V., et al. 2008. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 105, 1067610680.10.1073/pnas.0802501105CrossRefGoogle ScholarPubMed
Lisiecki, L.E. & Raymo, M.E. 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, 10.1029/2004PA001071.Google Scholar
Lodolo, E., Donda, F. & Tassone, A. 2006. Western Scotia Sea margins: improved constraints on the opening of the Drake Passage. Journal of Geophysical Research, 111, 10.1029/2006JB004361.Google Scholar
Naish, T.R., Woolfe, K.J., Barrett, P.J., Wilson, G.S., Atkins, C., Bohaty, S.M., et al. 2001. Orbitally induced oscillations in the East Antarctic Ice Sheet at the Oligocene/Miocene boundary. Nature, 413, 719723.CrossRefGoogle ScholarPubMed
Nitsche, F.O., Porter, D., Williams, G., Cougnon, E.A., Fraser, A.D., Correia, R. & Guerrero, R. 2017. Bathymetric control of warm ocean water access along the East Antarctic Margin. Geophysical Research Letters, 44, 89368944.CrossRefGoogle Scholar
O'Brien, P.E., Cooper, A.K., Florindo, F., Handwerger, D.A., Lavelle, M., Passchier, S., et al. . 2004. Prydz channel fan and the history of extreme ice advances in Prydz Bay. Proceedings of the Ocean Drilling Program: Scientific Results, 188, 10.2973/odp.proc.sr.188.2004.Google Scholar
Patterson, M.O., McKay, R., Naish, T., Escutia, C., Jimenez-Espejo, F.J., Raymo, M.E., et al. 2014. Orbital forcing of the East Antarctic Ice Sheet during the Pliocene and Early Pleistocene. Nature Geoscience, 7, 841847.CrossRefGoogle Scholar
Raymo, M.E., Mitrovica, J.X., O'Leary, M.J., DeConto, R.M. & Hearty, P.J. 2011. Departures from eustasy in Pliocene sea-level records. Nature Geoscience, 4, 10.1038/ngeo1118.CrossRefGoogle Scholar
Rees-Owen, R., Gill, F., Newton, R., IvanoviĆ, R., Francis, J.E., Riding, J., et al. 2018. The last forests on Antarctica: reconstructing flora and temperature from the Neogene Sirius Group, Transantarctic Mountains. Organic Geochemistry, 118, 10.1016/j.orggeochem.2018.01.001.CrossRefGoogle Scholar
Rignot, E., Velicogna, I., van den Broeke, M.R., Monaghan, A. & Lenaerts, J.T.M. 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38, 10.1029/2011GL046583.Google Scholar
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. & Morlighem, M. 2019. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences of the United States of America, 116, 10951103.CrossRefGoogle ScholarPubMed
Salabarnada, A., Escutia, C., Röhl, U., Nelson, C.H., McKay, R., Jiménez-Espejo, F.J., et al. 2018. Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica - part 1: insights from Late Oligocene astronomically paced contourite sedimentation. Climate of the Past, 14, 9911014.CrossRefGoogle Scholar
Scambos, T.A., Bohlander, J.A., Shuman, C.A. & Skvarca, P. 2004. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters, 31, 10.1029/2004GL020670.CrossRefGoogle Scholar
Shen, Q., Wang, H., Shum, C.K., Jiang, L., Hou, H.T. & Dong, J. 2018. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica. Scientific Reports, 8, 10.1038/s41598-018-22765-0.Google ScholarPubMed
Shevenell, A.E., Kennett, J.P. & Lea, D.W. 2004. Middle Miocene Southern Ocean cooking and Antarctic cryosphere expansion. Science, 305, 17661769.CrossRefGoogle Scholar
Siegert, M.J., Carter, S., Tabacco, I., Popov, S. & Blankenship, D.D. 2005. A revised inventory of Antarctic subglacial lakes. Antarctic Science, 17, 453460.CrossRefGoogle Scholar
Silvano, A., Rintoul, S.R., Pena-Molino, B., Hobbs, W.R., van Wijk, E., Aoki, S., et al. 2018. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic bottom water. Science Advance, 4, 10.1126/sciadv.aap9467.Google ScholarPubMed
Velicogna, I., Sutterley, T.C. & van den Broeke, M.R. 2014. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophyical Research Letters, 41, 81308137.Google Scholar
Williams, G.D., Meijers, A.J.S., Poole, A., Mathiot, P., Tamura, T. & Klocker, A. 2011. Late winter oceanography off the Sabrina and BANZARE coast (117–128°E), East Antarctica, Deep-Sea Research II, 58, 11941210.Google Scholar
Wilson, G.S., Pekar, S.F., Naish, T., Passchier, S. & DeConto, R. 2008. The Oligocene–Miocene boundary. Antarctic climate response to orbital forcing. In Florindo, F. & Siegert, M.J., eds. Antarctic climate evolution. Amsterdam: Elsevier, 369400.CrossRefGoogle Scholar
Winnick, M.J. & Caves, J.K. 2015. Oxygen isotope mass-balance constraints on Pliocene sea level and East Antarctic Ice Sheet stability. Geology, 43, 879882.Google Scholar
Wright, A.P., Young, D.A., Roberts, J.L., Schroeder, D.M., Bamber, J.L., Dowdeswell, J.A., et al. 2012. Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica. Journal of Geophysical Research, 117, 10.1029/2011jf002066.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 696–693.CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 30
Total number of PDF views: 106 *
View data table for this chart

* Views captured on Cambridge Core between 25th March 2020 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The influence of Totten Glacier on the Late Cenozoic sedimentary record
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The influence of Totten Glacier on the Late Cenozoic sedimentary record
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The influence of Totten Glacier on the Late Cenozoic sedimentary record
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *