Hostname: page-component-797576ffbb-xg4rj Total loading time: 0 Render date: 2023-12-09T21:26:37.943Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Monitoring snow and ice surfaces on King George Island, Antarctic Peninsula, with high-resolution TerraSAR-X time series

Published online by Cambridge University Press:  30 November 2015

U. Falk*
Center for Remote Sensing of Land Surfaces, University of Bonn, Walter-Flex-Str. 3, D-53113 Bonn, Germany
H. Gieseke
Center for Remote Sensing of Land Surfaces, University of Bonn, Walter-Flex-Str. 3, D-53113 Bonn, Germany
F. Kotzur
Center for Remote Sensing of Land Surfaces, University of Bonn, Walter-Flex-Str. 3, D-53113 Bonn, Germany
M. Braun
Institute of Geography, University of Erlangen-Nuremberg, Kochstr. 4/4, D-91054 Erlangen, Germany Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks AK 99775-7320, USA


Changes of glaciers and snow cover in polar regions affect a wide range of physical and ecosystem processes on land and in the adjacent marine environment. In this study, we investigated the potential of 11-day repeat high-resolution satellite image time series from the TerraSAR-X mission to derive glaciological and hydrological parameters on King George Island, Antarctica, between 25 October 2010 and 19 April 2011. The spatial pattern and temporal evolution of snow cover extent on ice-free areas can be monitored using multi-temporal coherence images. Synthetic aperture radar (SAR) coherence is used to map glacier extent of land-terminating glaciers with an average accuracy of 25 m. Multi-temporal SAR colour composites identify the position of the late summer snow line at ~220 m a.s.l. Glacier surface velocities are obtained from intensity feature-tracking. Surface velocities near the calving front of Fourcade Glacier were up to 1.8±0.01 m d-1. Using an intercept theorem based on fundamental geometric principles together with differential GPS field measurements, the ice discharge of Fourcade Glacier was estimated at 20 700±5500 m3 d-1 (corresponding to ~19±5 kt d-1). The rapidly changing surface conditions on King George Island and the lack of high-resolution digital elevation models for the region remain restrictions for the applicability of SAR data and the precision of derived products. Supplemental data are available at

Physical Sciences
© Antarctic Science Ltd 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Arctic and Antarctic Research Institute . 2011. Information on monthly meteorology data at Bellingshausen Station. Google Scholar
Arigony-Neto, J., Saurer, H., Simões, J.C., Rau, F., Jaña, R., Vogt, S. & Gossmann, H. 2009. Spatial and temporal changes in dry-snow line altitude on the Antarctic Peninsula. Climatic Change, 94, 1933.Google Scholar
Atwood, D.K., Meyer, F. & Arendt, A. 2010. Using L-band SAR coherence to delineate glacier extent. Canadian Journal of Remote Sensing, 36, S186S195.Google Scholar
Bamler, R. & Hartl, P. 1998. Synthetic aperture radar interferometry. Inverse Problems, 14, R1R54.Google Scholar
Bamber, J.L. & Payne, A.J. 2004. Mass balance of the cryosphere: observation and modelling of contemporary and future changes. Cambridge: Cambridge University Press, 662 pp.Google Scholar
Bintanja, R. 1995. The local surface energy balance of the Ecology Glacier, King George Island, Antarctica: measurements and modeling. Antarctic Science, 7, 315325.Google Scholar
Blindow, N., Suckro, S., Rückamp, M., Braun, M., Schindler, M., Breuer, B., Saurer, H., Simoes, J.C. & Lange, M.A. 2010. Geometry and thermal regime of the King George Island ice cap, Antarctica from GPR and GPS measurements. Annals of Glaciology, 51, 103109.Google Scholar
Braun, M. 2001. Ablation on the ice cap of King George Island (Antarctica) – an approach from field measurements, modelling and remote sensing. PhD thesis, Albert-Ludwigs-Universität Freiburg, 165 pp [Unpublished].Google Scholar
Braun, M. & Rau, F. 2000. Using a multi-year data archive of ERS SAR imagery for the monitoring of firn line positions and ablation patterns on the King George Island ice cap (Antarctica). Proceedings of the EARSeL-LISSIG-Workshop Land Ice and Snow, Dresden/FRG, 16–17 June 2000, 281–291.Google Scholar
Braun, M., Rau, F., Saurer, H. & Gossmann, H. 2000. Development of radar glacier zones on the King George Island ice cap, Antarctica, during austral summer 1996/97 as observed in ERS-2 SAR data. Annals of Glaciology, 31, 357363.Google Scholar
Braun, M., Simões, J.C., Vogt, S., Bremer, U.F., Blindow, N., Pfender, M., Saurer, H., Aquino, F.E. & Ferron, F.A. 2001. An improved topographic database for King George Island: compilation, application and outlook. Antarctic Science, 13, 4152.Google Scholar
Cook, A.J. & Vaughan, D.G. 2010. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere, 4, 7798.Google Scholar
Dlr . 2009. TerraSAR-X mission brochure: the German Radar Eye in Space. Scholar
Dierssen, H.M., Smith, R.C. & Vernet, M. 2002. Glacial meltwater dynamics in coastal waters west of the Antarctic Peninsula. Proceedings of the National Academy of Sciences of the United States of America, 99, 17901795.Google Scholar
Fox, A.J. & Cooper, A.P.R. 1998. Climate-change indicators from archival aerial photography of the Antarctic Peninsula. Annals of Glaciology, 27, 636642.Google Scholar
Kejna, M., Láska, K. & Caputa, Z. 1998. Recession of the Ecology Glacier (King George Island) in the period 1961–1996. Polish Polar Studies, 25th International Polar Symposium, Warsaw, 121128.Google Scholar
Macheret, Y.Y. & Moskalevsky, M.Y. 1999. Study of Lange Glacier on King George Island, Antarctica. Annals of Glaciology, 29, 202206.Google Scholar
Martianov, V. & Rakusa-Suszczewski, S. 1989. Ten years of climate observations at the Arctowski and Bellingshausen Station: King George Island, South Shetland Islands, Antarctica. In Birkenmeyer, A., ed. Global change regional research centres: scientific problems and conceptive development. Warsaw: Institute of Geographical & Spatial Organisation, 8087.Google Scholar
Navarro, F.J., Jonsell, U.Y., Corcuera, M.I. & Martín-Espanol, A. 2013. Decelerated mass loss of Hurd and Johnsons glaciers, Livingston Island, Antarctic Peninsula. Journal of Glaciology, 59, 10.3189/2013JoG12J144.Google Scholar
NovAtel. 2005. OEM4 family. User manual, vol. 1. Installation & operation manual. Calgary: NovAtel, 195 pp.Google Scholar
Osmanoglu, B., Braun, M., Hock, R. & Navarro, F.J. 2013. Surface velocity and ice discharge of the ice cap on King George Island, Antarctica. Annals of Glaciology, 54, 111119.Google Scholar
Partington, K.C. 1998. Discrimination of glacier facies using multi-temporal SAR data. Journal of Glaciology, 44, 4253.Google Scholar
Paterson, W.S.B. 1994. The Physics of glaciers, 3rd ed. Oxford: Elsevier, 650 pp.Google Scholar
Pritchard, H.D. & Vaughan, D.G. 2007. Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. Journal of Geophysical Research - Earth Surface, 112, 10.1029/2006JF000597.Google Scholar
Rau, F., Braun, M., Friedrich, M., Weber, F. & Goßmann, H. 2000. Radar glacier zones and their boundaries as indicators of glacier mass balance and climatic variability. Proceedings of EARSel-SIG-Workshop Land Ice and Snow, Dresden/FRG, 16–17 June 2000, 1, 317327.Google Scholar
Rau, F., Mauz, F., De Angelis, H., Jaña, R., Neto, J.A., Skvarca, P., Vogt, S., Saurer, H. & Gossmann, H. 2004. Variations of glacier frontal positions on the northern Antarctic Peninsula. Annals of Glaciology, 39, 525530.Google Scholar
Rückamp, M., Braun, M., Suckro, S. & Blindow, N. 2011. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global and Planetary Change, 79, 99109.Google Scholar
Schönwiese, C. 2000. Praktische Statistik für Meteorologen und Geowissenschaftler, 3rd ed. Stuttgart: Gebrüder Borntraeger, 319 pp.Google Scholar
Servicio Meteorológico Nacional . 2011. Meteorological data from Jubany Station, King George Island, western Antarctic Peninsula 2010. Servicio Meteorológico Nacional, 10.1594/PANGAEA.758314.Google Scholar
Simões, J.C., Bremer, U.F., Aquino, F.E. & Ferron, F.A. 1999. Morphology and variations of glacial drainage basins in the King George Island ice field, Antarctica. Annals of Glaciology, 29, 220224.Google Scholar
Strozzi, T., Luckman, A., Murray, T., Wegmuller, U., Werner, C.L. & Werner, C.L. 2002. Glacier motion estimation using SAR offset-tracking procedures. IEEE Transactions on Geoscience and Remote Sensing, 40, 23842391.Google Scholar
Suess, M., Riegger, S., Pitz, W. & Werminghaus, R. 2002. TerraSAR-X–design and performance. Proceedings of EUSAR2002, Köln, Germany, 4952.Google Scholar
Tokarski, A.K. 1987. Structural events in the South Shetland Islands (Antarctica). III. Barton Horst, King George Island. Studia Geologica Polonica, 90, 738.Google Scholar
Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., Lagun, V., Reid, P.A. & Iagovkina, S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279294.Google Scholar
Turner, J. & Marshall, G.J. 2011. Climate change in the Polar Regions. New York: Cambridge University Press, 448 pp.Google Scholar
Vaughan, D.G. 2006. Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arctic, Antarctic and Alpine Research, 38, 147152.Google Scholar
Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., Pudsey, C.J. & Turner, J. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243274.Google Scholar
Vogt, S. & Braun, M.H. 2004. Influence of glaciers and snow cover on terrestrial and marine ecosystems as revealed by remotely-sensed data. Pesquisa Antártica Brasileira, 4, 105118.Google Scholar
Weydahl, D.J. 2001. Analysis of ERS tandem SAR coherence from glaciers, valleys, and Fjord ice on Svalbard. IEEE Transactions on Geoscience and Remote Sensing, 39, 20292039.Google Scholar