Skip to main content
×
Home

Biodiversity of echinoids and their epibionts around the Scotia Arc, Antarctica

  • Katrin Linse (a1), Lisa J. Walker (a2) and David K.A. Barnes (a1)
Abstract
Abstract

The Scotia Arc, linking the Magellan region with the Antarctic Peninsula, comprises young and old islands both near continents and isolated, and is the only semi-continuous link between cool temperate and Antarctic environments. It is an ideal region for studies on how marine biodiversity changes across an extended transition zone. Echinoids (sea urchins) and their associated epibionts were found across depths from 91–1045 m, with 19 species from shelf and four from slope depths. The 23 species from 38 trawls represent 31% of all echinoid species known from the Southern Ocean and 38% of the shelf/upper slope echinoids. The specimens collected comprise representatives of the five families Cidaridae, Echinidae, Temnopleuridae, Schizasteridae and Pourtalesiidae. Echinoids are probably a good model for how well we know Antarctic shelf and slope megabenthos; none of the species we report are new to science but we found nine (39%) of our study species present at new localities, some thousands of kilometres from previous findings. New biogeographic ranges are illustrated for Ctenocidaris gigantea, C. nutrix, C. spinosa, Abatus curvidens, A. ingens, A. shackletoni, Amphineustes rostratus, Tripylaster philippi and Pourtalesia aurorae. Southern Ocean echinoids show eurybathy as the mean depth range of our study species was 1241 m and only one was at less than 500 m. The current view of echinoid dominance of super-abundance in the shallows seems to be not transferable to shelf and slope depths as only one of 38 trawls was dominated by echinoids. Current knowledge on maximum sizes in Antarctic echinoids seems to be good as our morphometric measurements were mainly within known size ranges. Regular echinoids increased predictably in mass with increasing test length, apart from Ctenocidaris spinosa. Tissue mass of cidaroid species was ~17%, but across irregular species varied from 17.7–8.9%. No epibionts were found on irregular echinoids or Echinidae but 70 cidaroids examined carried 51 species representing ten classes. Many of these species are reported as cidaroid epibionts for the first time. Cidaroids and their epibionts constituted > 38% of the total macrofaunal richness in the trawls they were present in. Echinoids and their epibionts clearly contribute significantly to Southern Ocean biodiversity but are minor components of biomass except in the shallows.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Biodiversity of echinoids and their epibionts around the Scotia Arc, Antarctica
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Biodiversity of echinoids and their epibionts around the Scotia Arc, Antarctica
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Biodiversity of echinoids and their epibionts around the Scotia Arc, Antarctica
      Available formats
      ×
Copyright
Corresponding author
*kl@bas.ac.uk
References
Hide All
Allcock A.L. 2005. On the confusion surrounding Pareledone charcoti (Joubin, 1905) (Cephalopoda: Octopodidae): endemic radiation in the Southern Ocean. Zoological Journal of the Linnean Society, 143, 75108.
Andrew N.L., Agatsuma Y., Ballesteros E., Bazhin A.G., Creaser E.P., Barnes D.K.A., Botsford L.W., Bradbury A., Campbell A., Dixon J.D., Einarsson S., Gerring P., Hebert K., Hunter M., Hur S.B., Johnson C.R., Juinio-Menez M.A., Kalvass P., Miller R.J., Moreno C.A., Palleiro J.S., Rivas D., Robinson S.M.L., Schroeter S.C., Steneck R.S., Vadas R.I., Woodby D.A. & Xiaoqi Z. 2002. Status and management of world sea urchin fisheries. Oceanography and Marine Biology, 40, 343425.
Arnaud P.M., Lopez C.M., Olaso I., Ramil F., Ramos-Espla A.A. & Ramos A. 1998. Semi-quantitative study of macrobenthic fauna in the region of the South Shetland Islands and the Antarctic Peninsula. Polar Biology, 19, 160166.
Arntz W.E., Brey T. & Gallardo V.A. 1994. Antarctic zoobenthos. Oceanography and Marine Biology, 32, 241304.
Arntz W., Gutt J. & Klages M. 1997. Antarctic marine biodiversity: an overview. In Battaglia B., Valencia J. & Walton D.W.H., eds. Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press, 314.
Arntz W.E., Lovrich G. & Thatje S., eds. 2005a. The Magellan–Antarctic connection: Links and frontiers at high southern latitudes. Scientia Marina, 69, 373 pp.
Arntz W.E., Thatje S., Gerdes D., Gili J.-M., Gutt J., Jacob U., Montiel A., Orejas C. & Teixido N. 2005b. The Antarctic-Magellan connection: macrobenthos ecology on the shelf and upper slope, a progress report. Scientia Marina, 69, 237269.
Arntz W.E. & Brey T. 2003. The Expedition ANTARKTIS XIX/5 (LAMPOS) of RV “Polarstern” in 2003. Berichte zur Polar- und Meeresforschung, 462, 1120.
Arntz W.E. & Rios C. 1999. Magellan-Antarctic: ecosystems that drifted apart. Scientia Marina, 63 (Sup. 1), 518 pp.
Barnes D.K.A. & Brockington S. 2003. Zoobenthic diversity, biomass and abundance at Adelaide Island, Antarctica. Marine Ecology Progress Series, 249, 145155.
Barnes D.K.A. & Clarke A. 1995. Epibiotic communities on sublittoral macroinvertebrates at Signy Island, Antarctica. Journal of the Marine Biological Association of the United Kingdom, 75, 689703.
Barnes D.K.A. & Conlan K. 2007. Disturbance, colonization and development of Antarctic benthic communities. Philosophical Transactions of the Royal Society of London, B362, 1138.
Barnes D.K.A. & Griffiths H.J. 2008. Biodiversity and biogeography of southern temperate and polar bryozoans. Global Ecology and Biogeography, 17, 8499.
Barrett P.J. 2001. Climate change - an Antarctica perspective. New Zealand Science Review, 58, 1823.
Barry J.B., Grebmeier J.M., Smith J. & Dunbar R.B. 2003. Oceanographic versus seafloor-habitat control of benthic megafaunal communities in the S.W. Ross Sea, Antarctica. Antarctic Research Series, 78, 327354.
Blake D.B. & Aronson R.B. 1998. Eocene stelleroids (Echinodermata) at Seymour Island, Antarctic Peninsula. Journal of Paleontology, 72, 339353.
Bosch I., Beauchamp K.A., Steele M.E. & Pearse J.S. 1987. Development, metamorphosis and seasonal abundance of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri. Biological Bulletin, 173, 126135.
Brandt A., De Broyer C., De Mesel I., Ellingsen K.E., Gooday A.J., Hilbig B., Linse K., Thomson M.R.A. & Tyler P.A. 2007a. The biodiversity of the deep Southern Ocean benthos. Philosophical Transactions of the Royal Society of London, B362, 3966.
Brey T. & Gutt J. 1991. The genus Sterechinus (Echinodermata: Echinoidea) on the Weddell Sea shelf and slope, distribution, abundance and biomass. Polar Biology, 11, 227232.
Brey T., Pearse J., Basch L., McClintock J. & Slattery M. 1995. Growth and reproduction of Sterechinus neumayeri (Echinodermata: Echinoidea) in McMurdo Sound, Antarctica. Marine Biology, 124, 279292.
Brey T., Dahm C., Gorny M., Klages M., Stiller M. & Arntz W.E. 1996. Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarctic Science, 8, 36.
Brockington S. 2001. The seasonal ecology and physiology of Sterechinus neumayeri (Echinodermata: Echinoidea) at Adelaide Island, Antarctica. PhD thesis, Open University, Milton Keynes, UK, and British Antarctic Survey, Cambridge, UK, 209 pp. [Unpublished].
Brockington S., Peck L.S. & Tyler P.A. 2007 Gametogenesis and gonad mass cycles in the common circumpolar Antarctic echinoid Sterechinus neumayeri. Marine Ecology Progress Series, 330, 139147.
Brockington S. & Peck L.S. 2001. Seasonality of respiration and ammonium excretion in the Antarctic echinoid Sterechinus neumayeri. Marine Ecology Progress Series, 219, 159168.
Brockington S., Clarke A. & Chapman A.L.G. 2001. Seasonality of feeding and nutritional status during the austral winter in the Antarctic sea urchin Sterechinus neumayeri. Marine Biology, 139, 127138.
Brown K., Fraser K.P.P., Barnes D.K.A. & Peck L. 2004. Links between the structure of an Antarctic shallow-water community and ice impact frequency. Oecologia, 141, 121129.
Chenuil A., Hault A. & Féral J.-P. 2004. Paternity analysis in the Antarctic brooding sea urchin Abatus nimrodi. A pilot study. Polar Biology, 27, 177182.
Chiantore M., Guidetti M., Cavallero M., De Domenico F., Albertelli G. & Cattaneo-Vietti R. 2006. Sea urchins, sea starts and brittle stars from Terra Nova Bay (Ross Sea, Antarctica). Polar Biology, 29, 467475.
Clarke A. & Johnston N. 2003. Antarctic marine benthic diversity. Oceanography and Marine Biology, 41, 47114.
Clarke A., Griffiths H.J., Linse K., Barnes D.K.A. & Crame J.A. 2007. How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographic patterns in Southern Ocean gastropod and bivalve molluscs. Diversity & Distribution, 13, 620632.
Collins M.A. & Rodhouse P.G.K. 2006. Southern Ocean cephalopods. Advances in Marine Biology, 50, 191265.
Convey P. 2006. Antarctic climate change and its influence on terrestrial ecosystems. In Bergstrom D., Convey P. & Huiskes A.H.L., eds. Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Dordrecht: Springer. 253272.
Cox N.L. & Halanych K.M. 2005. Phylogeography of Sterechinus neumayeri from South American and Antarctic waters using the 16S MTDNA marker. Integrative and Comparative Biology, 45, 1122.
Cranmer T.L., Ruhl H.A., Baldwin R.J. & Kaufmann R.S. 2003. Spatial and temporal variation in the abundance, distribution and population structure of epibenthic megafauna in Port Foster, Deception Island. Deep-Sea Research II, 50, 18211842.
David B & Laurin B. 1991. L'ontogenèse complexe du spatangue Echinocardium cordatum: Un test des standards des trajectoires hétérochroniques. Geobios, 24, 569583.
David B., Magniez F., Villier L. & De Wever P. 2003. Conveying behaviour of the deep sea pourtalesiid Cystocrepis setigera off Peru. In Fèrd J.P. & David B., eds. Echinodermata research 2001. Lisse: Swets & Zeitlinger, 253257.
David B., Choné T., Festeau A., Mooi R. & De Ridder C. 2005a. Biodiversity of Antarctic echinoids: a comprehensive and interactive database. Scientia Marina, 69, 201203.
David B., Choné T., Mooi R. & De Ridder C. 2005b. Antarctic Echinoidea. In Wägele J.W. & Sieg J., eds. Synopses of the Antarctic benthos, vol. 10. Königstein: Koeltz Scientific books, 274 pp.
De Domenico F., Chiantore M., Buongiovanni S., Ferranti M.P., Ghione S., Thrush S., Cummings V., Hewitt J., Kroeger K. & Cattaneo-Vietti R. 2006. Latitude versus local effects on echinoderm assemblages along the Victoria Land coast, Ross Sea, Antarctica. Antarctic Science, 18, 655662.
De Ridder C. & Lawrence J.M. 1982. Food and feeding mechanisms in echinoids (Echinodermata). In Jangoux M. & Lawrence J.M., eds. Echinoid nutrition. Rotterdam: A.A. Balkema, 57115.
De Ridder C., David B. & Larrain A. 1992. Antarctic and subantarctic echinoids from Marion Dufresne expeditions MD03, MD04, MD08 and from the Polarstern expedition Epos III. Bulletin du Muséum national d'histoire naturelle Paris, A4, 405441.
Elner R.W. & Vadas R.L. 1990. Inference in ecology: the sea urchin phenomenon in the northwestern Atlantic. American Naturalist, 136, 108125.
Griffiths H.J., Linse K. & Barnes D.K.A. 2008. Distribution of macrobenthic taxa across the Scotia Arc, Antarctica. Antarctic Science, 20, 213–226.
Hayward P.J. 1995. Antarctic cheilostomatous bryozoa. Oxford: Oxford University Press, 355 pp.
Hedgpeth J. 1969. Introduction to Antarctic zoogeography. Antarctic Map Folio Series, 11, 144.
Hétérier V., De Ridder C., David B. & Rigaud T. 2004. Comparative biodiversity of ectosymbionts in two Antarctic cidaroid echinoids, Ctenocidaris spinosa and Rhynchocidaris triplopora. In Heinzeller T. & Nebelsick J., eds. Echinoderms. Proceedings 11th IEC, München. Rotterdam: Swets & Zeitlinger, 201205.
Hilbig B., Gerdes D. & Montiel A. 2006. Distribution patterns and biodiversity in polychaete communities of the Weddell Sea and Antarctic Peninsula area (Southern Ocean). Journal of the Marine Biological Association of the United Kingdom, 86, 711725.
Hotchkiss F.H.C. 1982. Antarctic fossil echinoids: review and current research. In Craddock C., ed. Antarctic geoscience Madison: University of Wisconsin Press, 679684.
Jacob U., Terpstra S. & Brey T. 2003. High-Antarctic regular sea urchins - the role of depth and feeding in niche separation. Polar Biology, 26, 99104.
Jacob U. 2001. Ökologie der cidaroiden Seeigel des Weddelmeeres. Diplomarbeit, Universität Bremen, 156. [Unpublished].
Kaiser S., Barnes D.K.A. & Brandt A. 2007. Slope and deep-sea abundance across scales: Southern Ocean isopods show how complex the deep sea can be. Deep Sea Research II, 54, 11761189.
Kaiser S. & Brandt A. 2007. Two new species of the genus Austroniscus Vanhoeffen, 1914 (Isopoda: Asellota: Nannoniscidae) from the Antarctic Shelf. Zootaxa, 1394, 4768.
Linse K., Barnes D.K.A. & Enderlein P. 2006a. Body size and growth of benthic invertebrates along an Antarctic latitudinal gradient. Deep-Sea Research Part II, 53, 921931.
Linse K., Griffiths H.J., Barnes D.K.A. & Clarke A. 2006b. Biodiversity and biogeography of Antarctic and sub-Antarctic Mollusca. Deep-Sea Research II, 53, 9851008.
Linse K. 2008. BIOPEARL, a multidisciplinary expedition to the Scotia Arc, Antarctica. Antarctic Science, 20, 211–212.
Livermore R.A., Eagles G., Morris P. & Maldonado A. 2004. Shackleton Fracture Zone: no barrier to early circumpolar ocean circulation. Geology, 32, 797800.
Livermore R., Hillenbrand C.-D., Meredith M.P. & Eagles G. 2007. Drake Passage and Cenozoic climate: an open and shut case? Geochemistry, Geophysics, Geosystems, 8, 10.1029/2005GC001224.
Lockhart S.J., O'Loughlin P.M. & Tutera P. 1994. Brood protection and diversity in echinoids from Prydz Bay, Antarctica. In David B., Guille A., Feral J.P. & Roux M., eds. Echinoderms through time Rotterdam: A.A. Balkema, 749756.
Lovell L.L. & Trego K.D. 2003. The epibenthic megafaunal and benthic infaunal invertebrates of Port Foster, Deception Island (South Shetland Islands Antarctica). Deep-Sea Research II, 50, 17991819.
López-Fe C.M. 2005. Cheilostomate bryozoa of the Bellingshausen Sea (western Antarctica): a preliminary report of the Results of the BENTART 2003 Spanish expedition. In Moyano H.I., Cancino G.J. & Wyse-Jackson P., eds. Bryozoan studies 2004. London: Routledge, 173179.
Mackensen A. 2004. Changing Southern Ocean palaeocirculation and effects on global climate. Antarctic Science, 16, 369386.
Maldonado A., Bohoyo F., Galindo-Zaldivar J., Hernandez-Molina J., Jabaloy A., Lobo F.J., Rodriguez-Fernandez J., Surinach E. & Vazquez J.T. 2006. Ocean basins near the Scotia-Antarctic plate boundary: influence of tectonics and paleoceanography on the Cenozoic deposits. Marine Geophysical Researches, 27, 83107.
Massin C. & Hétérier V. 2004. On a new species of apodid, Taeniogyrus magnibaculus n.sp. (Echinodermata, Holothuroidea), from Antarctica, living on the spines of cidarid echinoids. Polar Biology, 27, 441444.
Matsumoto K., Lynch-Stieglitz J. & Anderson R.F. 2001. Similar glacial and Holocene Southern Ocean hydrography. Paleoceanography, 16, 445454.
Mesphoulhé P. & David B. 1992. Stratégie de croissance d'un oursin subantarctique: Abatus cordatus des îles Kerguelen. Comptes rendus de l'Académie des sciences Paris, 314, 205211.
Mooi R., David B., Fell F.J. & Choné T. 2000. Three new species of bathyal cidaroids (Echinodermata: Echinoidea) from the Antarctic region. Proceedings of the Biological Society of Washington, 113, 224237.
Mooi R., Constable H., Lockhart S. & Pearse J. 2004. Echinothurioid phylogeny and the phylogenetic significance of Kamptosoma (Echinoidea: Echinodermata). Deep-Sea Research Part II, 51, 19031919.
Mortensen T. 1951. A monograph of the Echinoidea. V. Spatangoida 2. Copenhagen: C.A. Reitzel, 593 pp.
Néraudeau D., Crame J.A. & Kooser M. 2000. Upper Cretaceous echinoids form James Ross basin, Antarctica. Géobios, 33, 455466.
Palma A.T., Poulin E., Silva M.G., San Martin R.B., Munoz C.A. & Diaz A.D. 2007. Antarctic shallow subtidal echinoderms: is the ecological success of broadcasters related to ice disturbance? Polar Biology, 30, 343350.
Pearse J.S. & Giese A.C. 1966. Food, reproduction and organic constitution of the common Antarctic echinoid Sterechinus neumayeri (Meissner). Biological Bulletin, 130, 387401.
Pearse J.S. & Lockhart S.J. 2004. Reproduction in cold water: paradigm changes in the 20th century and a role for cidaroid sea urchins. Deep-Sea Research Part II, 51, 15331549.
Pena Cantero A.L. 2004. How rich is the deep-sea Antarctic benthic hydroid fauna? Polar Biology, 27, 767774.
Poulin E., Palma A.T. & Féral J.-P. 2002. Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends in Ecology and Evolution, 17, 218222.
Poulin E. & Féral J.-P. 1995. Pattern of spatial distribution of a brood-protecting schizasterid echinoid, Abatus cordatus, endemic to Kerguelen Islands. Marine Ecology Progress Series, 118, 179186.
Primo C. & Vazquez E. 2007. Zoogeography of the Antarctic ascidican fauna in relation to the sub-Antarctic and South America. Antarctic Science, 19, 321336.
Quale W., Peck L.S., Peat H., Ellis-Evans J.C. & Harrigan P.R. 2002. Extreme responses to climate change in Antarctic lakes. Science, 295, 645.
Ramos A. 1999. The megazoobenthos of the Scotia Arc islands. Scientia Marina, 63 (Sup. 1), 171182.
Ramos-Esplà A.A., Càrcael J.A. & Varela M. 2005. Zoogeographic relationships of the littoral ascidiofauna around the Antarctic Peninsula, in the Scotia Arc and in the Magellan region. Scientia Marina, 69 (Sup. 2), 215223.
Rehm P., Thatje S., Arntz W.E., Brandt A. & Heilmayer O. 2006. Distribution and composition of macrozoobenthic communities along a Victoria Land Transect (Ross Sea, Antarctica). Polar Biology, 29, 782790.
Schatt P. & Féral J.-P. 1996. Complete direct development of Abatus cordatus, a brooding schizasterid (Echinodermata: Echinoidea) from Kerguelen, with descrption of perigastrulation, a hypothetical new mode of gastrulation. Biological Bulletin, 190, 2444.
Schatt P. & Féral J.-P. 1991. The brooding cycle of Abatus cordatus (Echinodermata: Spatangoida) at Kerguelen islands. Polar Biology, 11, 283292.
Smellie J.L., Morris P., Leat P.T. & Turner D.B. 1998. Submarine caldera and other volcanic observations in Southern Thule, South Sandwich Islands. Antarctic Science, 10, 171172.
Tatiàn M., Antacli J.C. & Sahade R. 2005. Ascidians (Tunicata, Ascidiacea): species distribution along the Scotia Arc. Scientia Marina, 69 (Sup. 2), 205214.
Thompson B.A.W. & Riddle M.J. 2005. Bioturbation behaviour of the spatangoid urchin Abatus ingens in Antarctic marine sediments. Marine Ecology Progress Series, 290, 135143.
Tuya F., Boyra A., Sanchez-Jerez P., Barbera C. & Haroun R.J. 2004. Relationships between rocky-reef fish assemblages, the sea urchin Diadema antillarum and macroalgae throughout the Canarian Archipelago. Marine Ecology Progress Series, 278, 157169.
Tyler P.A., Young C.M. & Clarke A. 2000. Temperature and pressure tolerances of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri (Echinodermata: Echinoidea): potential for deep-sea invasion from high latitudes. Marine Ecology Progress Series, 192, 173180.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 100 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.