Skip to main content
×
×
Home

Biogeophysical properties of an expansive Antarctic supraglacial stream

  • Michael D. SanClements (a1), Heidi J. Smith (a2), Christine M. Foreman (a2), Marco Tedesco (a3), Yu-Ping Chin (a4), Christopher Jaros (a1) and Diane M. McKnight (a1)...
Abstract

Supraglacial streams are important hydrologic features in glaciated environments as they are conduits for the transport of aeolian debris, meltwater, solutes and microbial communities. We characterized the basic geomorphology, hydrology and biogeochemistry of the Cotton Glacier supraglacial stream located in the McMurdo Dry Valleys of Antarctica. The distinctive geomorphology of the stream is driven by accumulated aeolian sediment from the Transantarctic Mountains, while solar radiation and summer temperatures govern melt in the system. The hydrologic functioning of the Cotton Glacier stream is largely controlled by the formation of ice dams that lead to vastly different annual flow regimes and extreme flushing events. Stream water is chemically dilute and lacks a detectable humic signature. However, the fluorescent signature of dissolved organic matter (DOM) in the stream does demonstrate an extremely transitory red-shifted signal found only in near-stream sediment leachates and during the initial flushing of the system at the onset of flow. This suggests that episodic physical flushing drives pulses of DOM with variable quality in this stream. This is the first description of a large Antarctic supraglacial stream and our results provide evidence that the hydrology and geomorphology of supraglacial streams drive resident microbial community composition and biogeochemical cycling.

Copyright
Corresponding author
michael.sanclements@colorado.edu
References
Hide All
Alger, A.S., McKnight, D.M., Spaulding, S.A., Tate, C.M., Shupe, G.H., Welch, K.A., Edwards, R., Andrews, E.D. & House, H.R. 1997. Ecological processes in a cold desert ecosystem: the abundance and species distribution of algal mats in glacial meltwater streams in Taylor Valley, Antarctica. Occasional Paper no. 51. Boulder, CO: Institute of Arctic and Alpine Research, 118 pp.
Barker, J.D., Sharp, M.J., Fitzsimons, S.J. & Turner, R.J. 2006. Abundance and dynamics of dissolved organic carbon in glacier systems. Arctic Antarctic and Alpine Research, 38, 163172.
Barrett, J.E., Virginia, R.A., Lyons, W.B., McKnight, D.M., Priscu, J.C., Doran, P.T., Fountain, A.G., Wall, D.H. & Moorhead, D.L. 2007. Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. Journal of Geophysical Research - Biogeosciences, 112, 10.1029/2005JG000141.
Cory, R.M. & McKnight, D.M. 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology, 39, 81428149.
Cory, R.M., Miller, M.P., McKnight, D.M., Guerard, J.J. & Miller, P.L. 2010. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnology and Oceanography - Methods, 8, 6778.
Cozzetto, R. 2009. Controls on stream and hyporheic temperatures, Taylor Valley, Antarctica and large-scale climate influences on interannual flow variation in the Onyx River, Antarctica. PhD thesis, University of Colorado Boulder, 127 pp. [Unpublished].
Doran, P.T., McKay, C.P., Clow, G.D., Dana, G.L., Fountain, A.G., Nylen, T. & Lyons, W.B. 2002. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. Journal of Geophysical Research - Atmospheres, 107, 10.1029/2001JD002045.
Doran, P.T., McKay, C.P., Fountain, A.G., Nylen, T., McKnight, D.M., Jaros, C. & Barrett, J.E. 2008. Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. Antarctic Science, 20, 10.1017/S0954102008001272.
Ewing, K.J. 1970. Supraglacial streams on the Kaskawulsh Glacier, Yukon Territory. Arctic Institute of North America Research Paper, No. 57, 121167.
Foreman, C.M., Sattler, B., Mikucki, J.A., Porazinska, D.L. & Priscu, J.C. 2007. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. Journal of Geophysical Research - Biogeosciences, 112, 10.1029/2006JG000358.
Foreman, C.M., Cory, R.M., Morris, C.E., SanClements, M.D., Smith, H.J., Lisle, J.T., Miller, P.L., Chin, Y.P. & McKnight, D.M. 2013. Microbial growth under humic-free conditions in a supraglacial stream system on the Cotton Glacier, Antarctica. Environmental Research Letters, 8, 10.1088/1748-9326/8/3/035022.
Fortner, S.K., Tranter, M., Fountain, A., Lyons, W.B. & Welch, K.A. 2005. The geochemistry of supraglacial streams of Canada Glacier, Taylor Valley (Antarctica), and their evolution into proglacial waters. Aquatic Geochemistry, 11, 391412.
Green, W.J., Angle, M.P. & Chave, K.E. 1988. The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry Valleys. Geochimica et Cosmochimica Acta, 52, 12651274.
Green, W.J., Stage, B.R., Preston, A., Wagers, S., Shacat, J. & Newell, S. 2005. Geochemical processes in the Onyx River, Wright Valley, Antarctica: major ions, nutrients, trace metals. Geochimica et Cosmochimica Acta, 69, 839850.
Hodson, A., Anesio, A.M., Tranter, M., Fountain, A., Osborn, M., Priscu, J., Laybourn-Parry, J. & Sattler, B. 2008. Glacial ecosystems. Ecological Monographs, 78, 4167.
Hoffman, M., Fountain, A.G. & Liston, G. 2014. Near-surface internal melting – a substantial mass loss on Antarctic Dry Valley glaciers. Journal of Glaciology, 60, 10.3189/2014JoG13J095.
Hood, E., Fellman, J., Spencer, R.G.M., Hernes, P.J., Edwards, R., D’Amore, D. & Scott, D. 2009. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature, 462, 10.1038/nature08580.
House, H.R., McKnight, D.M. & von Guerard, P. 1995. The influence of stream channel characteristics on streamflow and annual water budgets for lakes in Taylor Valley. Antarctic Journal of the United States, 30(5), 284287.
Jeffrey, S.W. & Humphrey, G.F. 1975. New spectrophotometric equations for determining chlorophyll a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167, 191194.
Kirchman, D.L., Meon, B., Ducklow, H.W., Carlson, C.A., Hansell, D.A. & Steward, G.F. 2001. Glucose fluxes and concentrations of dissolved combined neutral sugars (polysaccharides) in the Ross Sea and Polar Front Zone, Antarctica. Deep-Sea Research II - Topical Studies in Oceanography, 48, 10.1016/S0967-0645(01)00085-6.
Knighton, A.D. 1981. Channel form and flow characteristics of supraglacial streams, Austre-Okstindbreen, Norway. Arctic and Alpine Research, 13, 295306.
Lancaster, N. 2002. Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic Antarctic and Alpine Research, 34, 10.2307/1552490.
MacDonnel, S.A. & Sean, J.F. 2012. Observations of cryoconite hole system processes on an Antarctic glacier. Revista Chilena de Historia Natural, 85, 10.4067/S0716-078X2012000400003.
McKnight, D.M., Boyer, E.W., Westerhoff, P.K., Doran, P.T., Kulbe, T. & Andersen, D.T. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46, 3848.
McKnight, D.M., Niyogi, D.K., Alger, A.S., Bomblies, A., Conovitz, P.A. & Tate, C.M. 1999. Dry Valley streams in Antarctica: ecosystems waiting for water. BioScience, 49, 985995.
Miller, M.P. & McKnight, D.M. 2010. Comparison of seasonal changes in fluorescent dissolved organic matter among aquatic lake and stream sites in the Green Lakes Valley. Journal of Geophysical Research - Biogeosciences, 115, 10.1029/2009JG000985.
Miller, M.P., Simone, B.E., McKnight, D.M, Cory, R.M., Williams, M.W. & Boyer, E.W. 2010. New light on a dark subject: comment. Aquatic Sciences, 72, 269275.
Nylen, T.H., Fountain, A.G. & Doran, P.T. 2004. Climatology of katabatic winds in the McMurdo Dry Valleys, southern Victoria Land, Antarctica. Journal of Geophysical Research - Atmospheres, 109, 10.1029/2003JD003937.
Priscu, J.C. & Wolf, C.F. 2000. Limnological methods for the McMurdo Dry Valleys Long Term Ecological Research program. Available at: www.mcmlter.org/data/lakes/MCM LimnoMethods.pdf.
Röthlisberger, H. & Lang, H. 1987. Glacial hydrology. In Gurnell, A.M. & Clark, M.J., eds. Glacio-fluvial sediment transfer: an alpine perspective. Chichester: John Wiley, 207284.
Scott, D., Hood, E. & Nassry, M. 2011. In-stream uptake and retention of C, N and P in a supraglacial stream. Annals of Glaciology, 51, 8086.
Smith, H.J., Schmit, A., Foster, R., Littman, S., Kuypers, M.M.M. & Foreman, C.M. 2016. Biofilms on glacial surfaces: hotspots for biological activity. npj Biofilms and Microbiomes, 2, 10.1038/npjbiofilms.2016.8.
Welch, K.A., Lyons, W.B., Whisner, C., Gardner, C.B., Gooseff, M.N., McKnight, D.M. & Priscu, J.C. 2010. Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. Antarctic Science, 22, 10.1017/S0954102010000702.
Wright, C.S. & Priestley, R.E. 1922. Glaciology British (Terra Nova) Antarctic Expedition, 1910–1913. London: Harrison & Sons, 487 pp.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed