Skip to main content
×
Home
    • Aa
    • Aa

Changes in lichen diversity and community structure with fur seal population increase on Signy Island, South Orkney Islands

  • Sergio E. Favero-Longo (a1), Nicoletta Cannone (a2), M. Roger Worland (a3), Peter Convey (a3), Rosanna Piervittori (a1) and Mauro Guglielmin (a4)...
Abstract
Abstract

Signy Island has experienced a dramatic increase in fur seal numbers over recent decades, which has led to the devastation of lowland terrestrial vegetation, with the eradication of moss turfs and carpets being the most prominent feature. Here we demonstrate that fur seals also affect the other major component of this region’s typical cryptogamic vegetation, the lichens, although with a lower decrease in variability and abundance than for bryophytes. Classification (UPGMA) and ordination (Principal Coordinate Analysis) of vegetation data highlight differences in composition and abundance of lichen communities between areas invaded by fur seals and contiguous areas protected from these animals. Multivariate analysis relating lichen communities to environmental parameters, including animal abundance and soil chemistry (Canonical Correspondence Analysis), suggests that fur seal trampling results in the destruction of muscicolous-terricolous lichens, including several cosmopolitan and bipolar fruticose species. In addition, animal excretion favours an increase in nitrophilous crustose species, a group which typically characterizes areas influenced by seabirds and includes several Antarctic endemics. The potential effect of such animal-driven changes in vegetation on the fragile terrestrial ecosystem (e.g. through modification of the ground surface temperature) confirms the importance of indirect environmental processes in Antarctica.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Changes in lichen diversity and community structure with fur seal population increase on Signy Island, South Orkney Islands
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Changes in lichen diversity and community structure with fur seal population increase on Signy Island, South Orkney Islands
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Changes in lichen diversity and community structure with fur seal population increase on Signy Island, South Orkney Islands
      Available formats
      ×
Copyright
Corresponding author
sergio.favero@unito.it
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P. Convey 2006. Antarctic climate change and its influences on terrestrial ecosystems. InBergstrom, D.M., Convey, P. & Huiskes, A.H.L., eds. Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Dordrecht: Springer, 253272.

C. Körner 2003. Alpine plant life, 2nd ed. Berlin: Springer Verlag, 349 pp.

R.I.L. Smith 1990. Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. InKerry, K.R. & Hempel, G., eds.Antarctic ecosystems: ecological change and conservation. Berlin: Springer, 3250.

S. Will-Wolf , C. Scheidegger B. McCune 2002. Methods for monitoring biodiversity and ecosystem function. InNimis, P.L., Scheidegger, C. & Wolseley, P.A., eds. Monitoring with lichens - Monitoring lichens. Series IV: Earth and Environmental Sciences 7. Dordrecht: Kluwer Academic Publishers, 147162.

S. Will-Wolf , D.L. Hawksworth , B. Mc Cune , R. Rosentreter H.J.M. Sipman 2004. Lichenized fungi. InMueller, G.M., Bills, G.F. & Foster M.S., eds. Biodiversity of fungi: inventory and monitory methods. New York: Academic Press, 173195.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
PDF
Supplementary Materials

Favero-Longo supplementary material
Appendix.pdf

 PDF (198 KB)
198 KB

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 33 *
Loading metrics...

Abstract views

Total abstract views: 89 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th June 2017. This data will be updated every 24 hours.