Skip to main content Accessibility help
×
×
Home

Cosmogenic nuclide exposure age constraints on the glacial history of the Lake Wellman area, Darwin Mountains, Antarctica

  • B.C. Storey (a1), D. Fink (a2), D. Hood (a1), K. Joy (a1), J. Shulmeister (a3), M. Riger-Kusk (a1) and M.I. Stevens (a4)...
Abstract

We present direct terrestrial evidence of ice volume change of the Darwin and Hatherton glaciers which channel ice from the Transantarctic Mountains into the Ross Ice Shelf. Combining glacial geomorphology with cosmogenic exposure ages from 25 erratics indicates a pre-LGM ice volume at least 600 m thicker than current Hatherton ice elevation was established at least 2.2 million years ago. In particular, five erratics spread across a drift deposit at intermediate elevations located below a prominent moraine feature mapped previously as demarcating the LGM ice advance limits, give a well-constrained single population with mean 10Be age of 37.0 ± 5.5 ka (1σ). At lower elevations of 50–100 m above the surface of Lake Wellman, a further five samples from within a younger drift deposit range in exposure age from 1 to 19 ka. Our preferred age model interpretation, which is partly dependent on the selection of a minimum or maximum age-elevation model, suggests that LGM ice volume was not as large as previously estimated and constrains LGM ice elevation to be within ± 50 m of the modern Hatherton Glacier ice surface, effectively little different from what is observed today.

Copyright
Corresponding author
Bryan.storey@canterbury.ac.nz
References
Hide All
Adams, B.J., Bardgett, R.D., Ayres, E., Wall, D.H., Aislabe, J., Bamforth, S., Bargagli, R., Cary, C., Cavacini, P., Connell, L., Convey, P., Fell, J.W., Frati, F., Hogg, I.D., Newsham, K.K., O’donnel, A., Russell, N., Seppelt, R.D. Stevens, M.I. 2006. Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38, 30033018.
Balco, G., Stone, J.O., Lifton, N.A. Dunai, T.J. 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology, 3, 174195.
Bentley, M.J. 1999. Volume of Antarctic ice at the Last Glacial Maximum and its impact on global sea level change. Quaternary Science Reviews, 18, 15691595.
Bentley, M.J., Fogwill, C.J., Kubik, P.W. Sugden, D.E. 2006. Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula Ice Sheet. Geological Society of America Bulletin, 118, 11491159.
Bockheim, J.G., Wilson, S.C., Denton, G.H., Andersen, B.G. Stuiver, M. 1989. Late Quaternary ice-surface fluctuations of Hatherton Glacier, Transantarctic Mountains. Quaternary Research, 31, 229254.
Briner, J.P., Kaufman, D.S., Manley, W.F., Finkel, R.C. Caffee, M.W. 2005. Cosmogenic exposure dating of late Pleistocene moraine stabilization in Alaska. Geological Society of America Bulletin, 117, 11081120.
Briner, J.P., Miller, G.H., Davis, P.T., Bierman, P.R. Caffee, M. 2003. Last Glacial Maximum ice sheet dynamics in Arctic Canada inferred from young erratics perched on ancient tors. Quaternary Science Reviews, 22, 437444.
Brundin, L. 1970. Antarctic land faunas and their history. In Holdgate, M.W., ed. Antarctic ecology. London: Academic Press, 4154.
Butler, E.R.T. 1999. Process environments on modern and raised beaches in McMurdo Sound, Antarctica. Marine Geology, 162, 105120.
Child, D., Elliot, G., Mifsud, C., Smith, A.M. Fink, D. 2000. Sample processing for earth science studies at ANTARES. Nuclear Instruments & Methods in Physics Research, 172, 856860.
Convey, P. Stevens, M.I. 2007. Antarctic biodiversity. Science, 317, 18771878.
Convey, P., Gibson, J.A.E., Hillenbrand, C.-D., Hodgson, D.A., Pugh, P.J.A., Smellie, J.L. Stevens, M.I. 2008. Antarctic terrestrial life; challenging the history of the frozen continent? Biological Reviews, 83, 103117.
Convey, P., Stevens, M.I., Hodgson, D.A., Smellie, J.L., Hillenbrand, C.-D., Barnes, D.K.A., Clarke, A., Pugh, P.J.A., Linse, K. Cary, C. 2009. Exploring biological constraints on the glacial history of Antarctica. Quaternary Science Reviews, 28, 30353048.
Conway, H., Hall, B.L., Denton, G.H., Gades, A.M. Waddington, E.D. 1999. Past and future grounding-line retreat of the West Antarctic Ice Sheet. Science, 286, 280283.
Denton, G.H. Hughes, T.J. 2002. Reconstructing the Antarctic Ice Sheet at the Last Glacial Maximum. Quaternary Science Reviews, 21, 193202.
Fabel, D., Fink, D., Fredinc, O., Harbord, J., Land, M. Stroeven, A.P. 2006. Exposure ages from relict lateral moraines overridden by the Fennoscandian ice sheet. Quaternary Research, 65, 136146.
Fink, D. Smith, A. 2007. An inter-comparison of 10Be and 26Al AMS reference standards and the 10Be half-life. Nuclear Instruments and Methods in Physics Research, B259, 600609.
Fink, D., McKelvey, B., Hambrey, M., Fabel, D. Brown, R. 2006. Pleistocene deglaciation chronology of the Radok Lake basin, Amery Oasis, northern Prince Charles Mountains, Antarctica. Planetary Science Letters, 243, 229243.
Gosse, J.C. Phillips, F.M. 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews, 20, 14751560.
Gore, D.B., Rhodes, E.J., Augustinus, P.C., Leishman, M.R., Colhoun, E.A. Rees-Jones, J. 2001. Bunger Hills, East Antarctica: ice free at the Last Glacial Maximum. Geology, 29, 11031106.
Haskell, T.R., Kennett, J.P. Prebble, W.M. 1964. Basement and sedimentary geology of the Darwin Glacier area. In Adie, R.J., ed. Antarctic geology. Amsterdam: North-Holland Publishing Company, 348351.
Hood, D. 2010. The Pleistocene glacial history of the Lake Wellman area, Darwin Mountains, Antarctica. MSc thesis, Department of Geological Sciences, University of Canterbury, Christchurch, New Zealand, 168 pp. [Unpublished].
Howard-Williams, C., Peterson, D., Lyons, W.B., Cattaneo-Vietti, R. Gordon, S. 2006. Measuring ecosystem response in a rapidly changing environment: the Latitudinal Gradient Project. Antarctic Science, 18, 465471.
Huybrechts, P. 2002. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews, 21, 203231.
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, C.L., Kossert, K., Maiti, M., Poutivtsev, M. Remmert, A. 2009. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research, B, 268, 187191.
Lilly, K., Fink, D., Fabel, D. Lambek, K. 2010. Pleistocene dynamics of the interior East Antarctic ice sheet. Geology, 38, 703706.
Mackintosh, A., White, D., Fink, D., Gore, D.B., Pickard, J. Fanning, P.C. 2007. Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica, indicate little change in ice-sheet thickness since the Last Glacial Maximum. Geology, 35, 551554.
Miller, G.H., Wolfe, A.P., Steig, E.J., Sauer, P.E., Kaplan, M.R. Briner, J.P. 2002. The Goldilocks dilemma: big ice, little ice, or “just-right” ice in the eastern Canadian Arctic. Quaternary Science Reviews, 21, 3348.
Nakada, M. Lambeck, K. 1988. The melting history of the late Pleistocene Antarctic ice sheet. Nature, 333, 3640.
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C. McAninch, J. 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research, B258, 403413.
Putkonen, J. Swanson, T. 2003. Accuracy of cosmogenic ages for moraines. Quaternary Research, 59, 255261.
Ruprecht, U., Lumbsch, H.T., Brunauer, G., Green, T.G.A. Türk, R. 2010. Diversity of Lecidea (Lecideaceae, Ascomycota) species revealed by molecular data and morphological characters. Antarctic Science, 21, 10.1017/S0954102010000477.
Stevens, M. Hogg, I.D. 2006. Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and sprigtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation and life history on substitution rates, and speciation processes. Soil Biology & Biochemistry, 38, 31713180.
Stevens, M.I., Greenslade, P., Hogg, I.D. Sunnucks, P. 2006. Southern Hemisphere springtails: could any have survived glaciation of Antarctica? Molecular Biology & Evolution, 23, 874882.
Stevens, M.I., Frati, F., McGaughran, A., Spinsanti, G. Hogg, I.D. 2007. Phylogeographic structure suggests multiple glacial refugia in northern Victoria Land for the endemic Antarctic springtail Desoria klovstadi, (Collembola, Isotomidae). Zoologica Scripta, 36, 201212.
Stone, J.O. 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research, 105, 753759.
Stone, J.O., Balco, G.A., Sugden, D.E., Caffee, M.W., Sass, L.C., Cowdery, S.G. Siddoway, C. 2003. Holocene deglaciation of Marie Byrd Land, West Antarctica. Science, 299, 99102.
Stroeven, A.P., Fabel, D., Hättestrand, C. Harbor, J. 2002. A relict landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles. Geomorphology, 44, 145154.
Sugden, D.E., Bentley, M.J. Cofaigh, C.Ó. 2006. Geological and geomorphological insights into Antarctic ice sheet evolution. Philosophical Transactions of the Royal Society, A364, 16071625.
Sugden, D.E., Balco, G., Cowdery, S.G., Stone, J.O. Sass, L.C. 2005. Selective glacial erosion and weathering zones in the coastal mountains of Marie Byrd Land, Antarctica. Geomorphology, 67, 317334.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed