Skip to main content
×
Home
    • Aa
    • Aa

Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes

  • Alison F. Banwell (a1) and Douglas R. Macayeal (a2)
Abstract
Abstract

Using a previously derived treatment of viscoelastic flexure of floating ice shelves, we simulated multiple years of evolution of a single, axisymmetric supraglacial lake when it is subjected to annual fill/drain cycles. Our viscoelastic treatment follows the assumptions of the well-known thin-beam and thin-plate analysis but, crucially, also covers power-law creep rheology. As the ice-shelf surface does not completely return to its un-flexed position after a 1-year fill/drain cycle, the lake basin deepens with each successive cycle. This deepening process is significantly amplified when lake-bottom ablation is taken into account. We evaluate the timescale over which a typical lake reaches a sufficient depth such that ice-shelf fracture can occur well beyond the lake itself in response to lake filling/drainage. We show that, although this is unlikely during one fill/drain cycle, fracture is possible after multiple years assuming surface meltwater availability is unlimited. This extended zone of potential fracture implies that flexural stresses in response to a single lake filling/drainage event can cause neighbouring lakes to drain, which, in turn, can cause lakes farther afield to drain. Such self-stimulating behaviour may have accounted for the sudden, widespread appearance of a fracture system that drove the Larsen B Ice Shelf to break-up in 2002.

Copyright
Corresponding author
afb39@cam.ac.uk
References
Hide All
A.F. Banwell , D.R. MacAyeal & O.V Sergienko . 2013. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophysical Research Letters, 40, 10.1002/2013GL057694.

A.F. Banwell , M. Caballero , N.S. Arnold , N.F. Glasser , L. Mac Cathles & D.R MacAyeal . 2014. Supraglacial lakes on the Larsen B Ice Shelf, Antarctica, and the Paakitsoq, West Greenland: a comparative study. Annals of Glaciology, 55, 10.3189/2014AoG66A049.

R. Bindschadler , T.A. Scambos , H. Rott , P. Skvarka & P Vornberger . 2002. Ice dolines on Larsen Ice Shelf, Antarctica. Annals of Glaciology, 34, 283290.

C.P. Borstad , A. Khazendar , E. Larour , M. Morlighem , E. Rignot , M.P. Schodlok & H Seroussi . 2012. A damage mechanics assessment of the Larsen B Ice Shelf prior to collapse: toward a physically-based calving law. Geophysical Research Letters, 39, 10.1029/2012GL053317.

J.C. Burton , J.M. Amundson , D.S. Abbot , A. Boghosian , L.M. Cathles , S. Correa-Legisos , K.N. Darnell , N. Guttenberg , D.M. Holland & D.R MacAyeal . 2012. Laboratory investigations of iceberg capsize dynamics, energy dissipation and tsunamigenesis. Journal of Geophysical Research - Earth Surface, 117, 10.1029/2011JF002055.

I.F. Collins & I.R McCrae . 1985. Creep buckling of ice shelves and the formation of pressure rollers. Journal of Glaciology, 31, 242252.

H.A. Dugan , M.K. Obryk & P.T Doran . 2013. Lake ice ablation rates from permanently ice-covered Antarctic lakes. Journal of Glaciology, 59, 10.3189/2013JoG121080.

R. Gilbert & E.W Domack . 2003. Sedimentary record of disintegrating ice shelves in a warming climate, Antarctic Peninsula. Geochemistry Geophysics Geosystems, 4, 10.1029/2002GC000441.

N.F. Glasser & T.A Scambos . 2008. A structural glaciological analysis of the 2002 Larsen Ice Shelf collapse. Journal of Glaciology, 54, 10.3189/002214308784409017.

G.H Gudmundsson . 2011. Ice-stream response to ocean tides and the form of the basal sliding law. Cryosphere, 5, 10.5194/tc-5-259-2011.

C.H. LaBarbera & D.R MacAyeal . 2011. Traveling supraglacial lakes on George VI Ice Shelf, Antarctica. Geophysical Research Letters, 38, 10.1029/2011GL049970.

A.M. Le Brocq , N. Ross , J.A. Griggs , R.G. Bingham , H.F.J. Corr , F. Ferraccioli , A. Jenkins , T.A. Jordan , A.J. Payne , D.M. Rippin & M.J Siegert . 2013. Evidence from ice shelves for channelized meltwater flow beneath the Antarctic ice sheet. Nature Geoscience, 6, 10.1038/NGEO1977.

M. Leppäranta , O. Järvinen & O.P Mattila . 2013. Structure and life cycle of supraglacial lakes in Dronning Maud Land. Antarctic Science, 25, 10.1017/S0954102012001009.

S.R.M. Ligtenberg , P.K. Munneke & M.R van den Broeke . 2014. Present and future variations in Antarctic firn air content. Cryosphere, 8, 10.5194/tc-8-1711-2014.

A. Luckman , D. Jansen , B. Kulessa , E.C. King , P. Sammonds & D.I Benn . 2012. Basal crevasses in Larsen C Ice Shelf and implications for their global abundance. Cryosphere, 6, 10.5194/tc-6-113-2012.

A. Luckman , A. Elvidge , D. Jansen , B. Kulessa , P.K. Munneke , J. King & N.E Barrand . 2014. Surface melt and ponding on Larsen C Ice Shelf and the impact of fohn winds. Antarctic Science, 26, 10.1017/S0954102014000339.

D.R. MacAyeal & O.V Sergienko . 2013. Flexural dynamics of melting ice shelves. Annals of Glaciology, 54, 10.3189/2013AoG63A256.

D.R. MacAyeal , O.V. Sergienko & A.F Banwell . 2015. A model of viscoelastic ice-shelf flexure. Journal of Glaciology, 61, 10.3189/2015JoG14J169.

D.R. MacAyeal , T.A. Scambos , C.L. Hulbe & M.A Fahnestock . 2003. Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. Journal of Glaciology, 49, 2236.

J.C Maxwell . 1867. On the dynamical theory of gasses. Philosophical Transactions of the Royal Society London, 157, 10.1098/rstl.1867.0004.

D. McGrath , K. Steffen , H. Rajaram , T. Scambos , W. Abdalati & E Rignot . 2012. Basal crevasses on the Larsen C Ice Shelf, Antarctica: implications for melt-water ponding and hydrofracture. Geophysical Research Letters, 39, 10.1029/2012GL052413.

P.K Munneke , S.R.M. Ligtenberg , M. van den Broeke & D.G Vaughan . 2014. Firn air depletion as a precursor of Antarctic ice-shelf collapse. Journal of Glaciology, 60, 10.3189/2014JoG13J183.

J.M Reynolds . 1981. Lakes on George VI Ice Shelf, Antarctica. Polar Record, 20, 425432.

N.M Ribe . 2003. Periodic folding of viscous sheets. Physical Review E, 68, 0.1103/PhysRevE.68.036305.

S.H.R. Rosier , G.H. Gudmundsson & J.A.M Green . 2014. Insights into ice stream dynamics through modelling their response to tidal forcing. Cryosphere, 8, 10.5194/tc-8-1763-2014.

R. Sayag & M.G Worster . 2011. Elastic response of a grounded ice sheet coupled to a floating ice shelf. Physical Review E, 84, 10.1103/PhysRevE.84.036111.

T.A. Scambos , C. Hulbe & M Fahnestock . 2003. Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarctic Research Series, 79, 10.1029/AR079p0079.

T. Scambos , H.A. Fricker , C.C. Liu , J. Bohlander , J. Fastook , A. Sargent , R. Massom & A.M Wu . 2009. Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins Ice Shelf break-ups. Earth and Planetary Science Letters, 280, 10.1016/j.epsl.2008.12.027.

O.V Sergienko . 2010. Elastic response of floating glacier ice to impact of long-period ocean waves. Journal of Geophysical Research - Earth Surface, 115, 10.1029/2010JF001721.

A. Shepherd , D. Wingham , T. Payne & P Skvarca . 2003. Larsen Ice Shelf has progressively thinned. Science, 302, 10.1126/science.1089768.

M. Tedesco , M. Luthje , K. Steffen , N. Steiner , X. Fettweiss , I Willis , N. Bayou & A Banwell . 2012. Measurement and modeling of ablation of the bottom of supraglacial lakes in western Greenland. Geophysical Research Letters, 39, 10.1029/2011GL049882.

M. Tedesco , I.C. Willis , M.J. Hoffman , A.F. Banwell , P. Alexander & N.S Arnold . 2013. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet. Environmental Research Letters, 8, 10.1088/1748-9326/8/3/034007.

R.T. Walker , B.R. Parizek , R.B. Alley , S. Anandakrishnan , K.L. Riverman & K Christianson . 2013. Ice-shelf tidal flexure and subglacial pressure variations. Earth and Planetary Science Letters, 361, 422428.

M Van den Broeke . 2005. Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophysical Research Letters, 32, 10.1029/2005GL023247.

C.J Van der Veen . 1998. Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Regions Science and Technology, 27, 10.1016/S0165-232X(97)00022-0.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
PDF
Supplementary Materials

Banwell and Macayeal supplementary material
Banwell and Macayeal supplementary material 1

 PDF (143 KB)
143 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 3
Total number of PDF views: 47 *
Loading metrics...

Abstract views

Total abstract views: 244 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.