Skip to main content Accessibility help

Use of radium isotopes to estimate mixing rates and trace sediment inputs to surface waters in northern Marguerite Bay, Antarctic Peninsula

  • Amber L. Annett (a1), Sian F. Henley (a1), Pieter Van Beek (a2), Marc Souhaut (a2), Raja Ganeshram (a1), Hugh J. Venables (a3), Michael P. Meredith (a3) and Walter Geibert (a1) (a4)...


In the western Antarctic Peninsula region, micronutrient injection facilitates strong plankton blooms that support productive food webs, unlike large areas of the low-productivity Southern Ocean. We use naturally occurring radioisotopes of radium to constrain rates of chemical fluxes into Ryder Bay (a small coastal embayment in northern Marguerite Bay), and hence to evaluate possible sources of sediment-derived micronutrients and estimate sediment-ocean mixing rates. We present the first coupled, short-lived radium isotope (223Ra and 224Ra) measurements from Antarctic waters, both present at very low activities (mean 0.155 and 3.21 dpm m-3, respectively), indicating much lower radium inputs than in other coastal environments. Longer-lived 228Ra activity was also lower than existing nearshore values, but higher than open ocean waters, indicating some degree of coastal radium input on timescales exceeding the week-to-month range reflected by 223Ra and 224Ra. Using a simple diffusion model along a shore to mid-bay transect, effective horizontal eddy diffusivity estimates ranged from 0.22–0.83 m2 s-1 from 223Ra and 224Ra, respectively, much lower than already-low mixing estimates for the Southern Ocean. Significant radium enrichment and much faster mixing (18 m2 s-1) was found near a marine-terminating glacier and consequently any sediment-derived micronutrient inputs in this location are more probably dominated by glacial processes than groundwater, land runoff, or marine sediment sources.


Corresponding author


Hide All
Charette, M.A., Buesseler, K.O.Andrews, J.E. 2001. Utility of radium isotopes for evaluating the input and transport groundwater-derived nitrogen to a Cape Cod estuary. Limnology and Oceanography, 46, 465470.
Charette, M.A., Gonneea, M.E., Morris, P.J., Statham, P., Fones, G., Planquette, H., Salter, I.Garabato, A.N. 2007. Radium isotopes as tracers of iron sources fuelling a Southern Ocean phytoplankton bloom. Deep-Sea Research II, 54, 19891998.
Clarke, A., Meredith, M.P., Wallace, M.I., Brandon, M.A.Thomas, D.N. 2008. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep-Sea Research II, 55, 19882006.
Cochran, J.K.Krishnaswami, S. 1980. Radium, thorium, uranium and 210Pb in deep-sea sediments and sediment pore waters from the north equatorial Pacific. American Journal of Science, 280, 849889.
Cook, A.J., Fox, A.J., Vaughan, D.G.Ferrigno, J.G. 2005. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308, 541544.
Dimova, N., Dulaiova, H., Kim, G.Burnett, W.C. 2008. Uncertainties in the preparation of 224Ra Mn fiber standards. Marine Chemistry, 109, 220225.
Dulaiova, H., Ardelan, M.V., Henderson, P.B.Charette, M.A. 2009. Shelf-derived iron inputs drive biological productivity in the southern Drake Passage. Global Biogeochemical Cycles, 10.1029/2008GB003406.
Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P.Dulaiova, H. 2008. Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC). Marine Chemistry, 109, 198219.
Geibert, W.Vöge, I. 2008. Progress in the determination of 227Ac in sea water. Marine Chemistry, 109, 238249.
Geibert, W., Rutgers van der Loeff, M.M., Hanfland, C.Dauelsberg, H.-J. 2002. Actinium-227 as a deep-sea tracer: sources, distribution and applications. Earth and Planetary Science Letters, 198, 147165.
Hanfland, C. 2002. Radium-226 and radium-228 in the Atlantic sector of the Southern Ocean. PhD thesis, University of Bremen, 135 pp.
Hoffmann, L.J., Peeken, I.Lochte, K. 2008. Iron, silicate, and light co-limitation of three Southern Ocean diatom species. Polar Biology, 31, 10671080.
Howard, S.L., Hyatt, J.Padman, L. 2004. Mixing in the pycnocline over the western Antarctic Peninsula shelf during Southern Ocean GLOBEC. Deep-Sea Research II, 51, 19651979.
Jeandel, C., Peucker-Ehrenbrink, B., Jones, M.T., Pearce, C.R., Oelkers, E.H., Godderis, Y., Lacan, F., Aumont, O.Arsouze, T. 2011. Ocean margins: the missing term in oceanic element budgets? Eos Transactions, 92, 217224.
Klinck, J. 1998. Heat and salt changes on the continental shelf west of the Antarctic Peninsula between January 1993 and January 1994. Journal of Geophysical Research, 103, 76177636.
Martinson, D.G., Stammerjohn, S.E., Iannuzzi, R.A., Smith, R.C.Vernet, M. 2008. Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep-Sea Research II, 55, 19641987.
Meredith, M.P.King, J.C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 10.1029/2005GL024042.
Meredith, M.P., Venables, H.J., Clarke, A., Ducklow, H.J., Erickson, M., Leng, M.J., Lenaerts, J.T.M.van den Broeke, M.R. In press. The freshwater system west of the Antarctic Peninsula: spatial and temporal changes. Journal of Climate.
Meredith, M.P., Wallace, M.I., Stammerjohn, S.E., Renfrew, I.A., Clarke, A., Venables, H.J., Shoosmith, D.R., Souster, T.Leng, M.J. 2010. Changes in the freshwater composition of the upper ocean west of the Antarctic Peninsula during the first decade of the 21st century. Progress in Oceanography, 87, 127143.
Moffat, C., Owens, B.Beardsley, R.C. 2009. On the characteristics of Circumpolar Deep Water intrusions to the west Antarctic Peninsula continental shelf. Journal of Geophysical Research, 10.1029/2008JC004955.
Moffat, C., Beardsley, R.C., Owens, B.van Lipzig, N. 2008. A first description of the Antarctic Peninsula coastal current. Deep-Sea Research II, 55, 277293.
Montes-Hugo, M., Doney, S.C., Ducklow, H.W., Fraser, W., Martinson, D., Stammerjohn, S.E.Schofield, O. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science, 323, 14701473.
Moore, W.S. 2000a. Determining coastal mixing rates using radium isotopes. Continental Shelf Research, 20, 19932007.
Moore, W.S. 2000b. Ages of continental shelf waters determined from 223Ra and 224Ra. Journal of Geophysical Research, 105, 22 11722 122.
Moore, W.S. 2008. Fifteen years experience in measuring 224Ra and 223Ra by delayed-coincidence counting. Marine Chemistry, 109, 188197.
Moore, W.S.Arnold, R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research, 101, 13211329.
Pritchard, H.D., Ligtenberg, S.R.M., Fricker, H.A., Vaughan, D.G., van den Broeke, M.R.Padman, L. 2012. Antarctic ice sheet loss driven by basal melting of ice shelves. Nature, 484, 502505.
Raiswell, R. 2011. Iceberg-hosted nanoparticulate Fe in the Southern Ocean mineralogy, origin, dissolution kinetics and source of bioavailable Fe. Deep-Sea Research II, 58, 13641375.
Rutgers van der Loeff, M.M. 1994. 228Ra and 228Th in the Weddell Sea. In Johannessen, O.M., Muench, R.D. & Overland, J.E., eds. The polar oceans and their role in shaping the global environment. The Nansen centennial volume. Geophysical Monograph Series, 85, 177–186.
Scholten, J.C., Pham, M.K., Blinova, O., Charette, M.A., Dulaiova, H.Eriksson, M. 2010. Preparation of Mn-fiber standards for the efficiency calibration of the delayed coincidence counting system (RaDeCC). Marine Chemistry, 121, 206214.
Shaw, T.J.Moore, W.S. 2002. Analysis of 227Ac in seawater by delayed coincidence counting. Marine Chemistry, 78, 197203.
Shaw, T.J., Raiswell, R., Hexel, C.R., Vu, H.P., Moore, W.S., Dudgeon, R.Smith, K.L. 2011. Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea. Deep-Sea Research II, 58, 13761383.
Smale, D.A., Barnes, D.K.A., Fraser, K.P.P.Peck, L.S. 2008. Benthic community response to iceberg scouring at an intensely disturbed shallow water site at Adelaide Island, Antarctica. Marine Ecology Progress Series, 355, 8594.
Stammerjohn, S.E., Martinson, D.G., Smith, R.C., Yuan, X.Rind, D. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research, 10.1029/2007JC004269.
Van Beek, P., Souhaut, M.Reyss, J.-L. 2010. Measuring the radium quartet (226Ra, 228Ra, 224Ra, 223Ra) in water samples using gamma spectrometry. Journal of Environmental Radioactivity, 101, 521529.
Van Beek, P., Bourquin, M., Reyss, J-.L., Souhaut, M., Charette, M.A.Jeandel, C. 2008. Radium isotopes to investigate the water mass pathways on the Kerguelen Plateau (Southern Ocean). Deep-Sea Research II, 55, 622637.
Van Beek, P., Souhaut, M., Lansard, B., Bourquin, M., Reyss, J-L., Jean, P.von Ballmoos, P. In press. LAFARA: A new underground laboratory in the French Pyrénées for ultra low-level gamma-ray spectrometry. Journal of Environmental Radioactivity.
Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., Pudsey, C.J.Turner, J. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243274.
Venables, H.J., Clarke, A.Meredith, M.P. In press. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnology and Oceanography.
Wallace, M.I., Meredith, M.P., Brandon, M.A., Sherwin, T.J., Dale, A.Clarke, A. 2008. On the characteristics of internal tides and coastal upwelling behaviour in Marguerite Bay, west Antarctic Peninsula. Deep-Sea Research II, 55, 20232040.


Related content

Powered by UNSILO

Use of radium isotopes to estimate mixing rates and trace sediment inputs to surface waters in northern Marguerite Bay, Antarctic Peninsula

  • Amber L. Annett (a1), Sian F. Henley (a1), Pieter Van Beek (a2), Marc Souhaut (a2), Raja Ganeshram (a1), Hugh J. Venables (a3), Michael P. Meredith (a3) and Walter Geibert (a1) (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.