Skip to main content
×
Home
    • Aa
    • Aa

Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site

  • L.K. Tamppari (a1), R.M. Anderson (a2), P.D. Archer (a3), S. Douglas (a1), S.P. Kounaves (a2), C.P. Mckay (a4), D.W. Ming (a3), Q. Moore (a2), J.E. Quinn (a5), P.H. Smith (a6), S. Stroble (a2) and A.P. Zent (a4)...
Abstract
Abstract

The McMurdo Dry Valleys are among the driest, coldest environments on Earth and are excellent analogues for the Martian northern plains. In preparation for the 2008 Phoenix Mars mission, we conducted an interdisciplinary investigation comparing the biological, mineralogical, chemical, and physical properties of wetter lower Taylor Valley (TV) soils to colder, drier University Valley (UV) soils. Our analyses were performed for each horizon from the surface to the ice table. In TV, clay-sized particle distribution and less abundant soluble salts both suggested vertical and possible horizontal transport by water, and microbial biomass was higher. Alteration of mica to short-order phyllosilicates suggested aqueous weathering. In UV, salts, clay-sized materials, and biomass were more abundant near the surface, suggesting minimal downward translocation by water. The presence of microorganisms in each horizon was established for the first time in an ultraxerous zone. Higher biomass numbers were seen near the surface and ice table, perhaps representing locally more clement environments. Currently, water activity is too low to support metabolism at the Phoenix site, but obliquity changes may produce higher temperatures and sufficient water activity to permit microbial growth, if the populations could survive long dormancy periods (∼106 years).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site
      Available formats
      ×
Copyright
Corresponding author
leslie.tamppari@jpl.nasa.gov
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J.M. Aislabie , S. Jordan G.M. Barker 2008. Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma, 144, 920.

D.L. Balkwill , F.R. Leach , J.T. Wilson , J.F. McNabb D.C. White 1988. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments. Microbial Ecology, 16, 7384.

H. Bao D.R. Marchant 2006. Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research, 111, 10.1029/2005JD006669.

J.G. Bockheim 1997. Properties and classifications of cold desert soils from Antarctica. Soil Science Society of America Journal, 61, 224231.

I.B. Campbell G.G.C. Claridge 1982. The influence of moisture on the development of soils of the cold deserts of Antarctica. Geoderma, 28, 221238.

G.G.C. Claridge I.B. Campbell 1977. The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Science, 123, 377384.

J.D. Coates L.A. Achenbach 2004. Microbial perchlorate reduction: rocket-fuelled metabolism. Nature Reviews Microbiology, 2, 569580.

D.A. Cowan , N.J. Russell , A. Mamais D.M. Sheppard 2002. Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles, 6, 431436.

D.A. De Vries 1952. A nonstationary method for determining thermal conductivity of soil in situ. Soil Science, 73, 8389.

P.T. Doran , J.C. Priscu , W.B. Lyons , J.E. Walsh , A.G. Fountain , D.M. McKnight , D.L. Moorhead , R.A. Virginia , D.H. Wall , G.D. Clow , C.H. Fritsen , C.P. McKay A.N. Parsons 2002. Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517520.

G.J. Flynn 1996. The delivery of organic matter from asteroids and comets to the early surface of Mars. Earth, Moon, and Planets, 72, 469474.

E.I. Friedmann 1982. Endolithic microorganisms in the Antarctic cold desert. Science, 215, 10451053.

H. Gal , Z. Ronen , N. Weisbrod , O. Dahan R. Nativ 2008. Perchlorate degradation in contaminated soils and the deep unsaturated zone. Soil Biology & Biochemistry, 40, 17511757.

J.L. Heldmann , C.P. McKay , W.H. Pollard , D.T. Andersen O.B. Toon 2005. Annual development cycle of an icing deposit and associated perennial spring activity on Axel Heiberg Island, Canadian High Arctic. Arctic, Antarctic, and Alpine Research, 37, 127135.

S.P. Kounaves , M.H. Hecht , S.J. West , J. Morookian , S. Young , R. Quinn , P. Grunthaner , X. Wen , M. Weilert , C.A. Cable , A. Fisher , K. Gospodinova , J. Kapit , S. Stroble , P. Hsu , B.C. Clark , D.W. Ming P.H. Smith 2009. The MECA wet chemistry laboratory on the 2007 Phoenix Mars Scout lander. Journal of Geophysical Research, 114, E00A19.

S.P. Kounaves , S.T. Stroble , R.M. Anderson , Q. Moore , D.C. Catling , S. Douglas , C.P. Mckay , D.W. Ming , P.H. Smith , L.K. Tamppari A.P. Zent 2010a. Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environmental Science & Technology, 44, 23602364.

S.P. Kounaves , M.H. Hecht , J. Kapit , K. Gospodinova , L. Deflores , R. Quinn , W.V. Boynton , B.C. Clark , D.C. Catling , P. Hredzak , D.W. Ming , Q. Moore , J. Shusterman , S. Stroble , S.J. West S.M.M. Young 2010b. The wet chemistry experiments on the 2007 Phoenix Mars Scout lander mission: data analysis and results. Journal of Geophysical Research, 115, 10.1029/2009JE003424.

G. Linkletter , J. Bockheim F.C. Ugolini 1973. Soils and glacial deposits in the Beacon Valley, southern Victoria Land, Antarctica, New Zealand. Journal of Geology and Geophysics, 16, 90108.

L.C.W. MacLean , T. Tyliszczak , P.U.P.A. Gilbert , D. Zhou , T.J. Pray , T.C. Onstott G. Southam 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology, 6, 471480.

W.C. Mahaney , J.M. Dohm , V.R. Baker , H.E. Newsom , D.V. Malloch , R.G.V. Hancock , I. Campbell , D. Sheppard M.W. Milner 2001. Morphogenesis of Antarctic paleosols: Martian analogue. Icarus, 154, 113130.

D.R. Marchant J.W. Head III 2007. Antarctic Dry Valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus, 192, 187222.

M.T. Mellon , R.E. Arvidson , H.G. Sizemore , M.L. Searls , D.L. Blaney , S. Cull , M.H. Hecht , T.L. Heet , H.U. Keller , M.T. Lemmon , W.J. Markiewicz , D.W. Ming , R.V. Morris , W.T. Pike A.P. Zent 2009. Ground ice at the Phoenix landing site: stability state and origin. Journal of Geophysical Research, 114, 10.1029/2009JE00341.

G. Michalski , J.G. Bockheim , C. Kendall M. Thiemens 2005. Isotopic composition of Antarctic Dry Valley nitrate: implications for NOx sources and cycling in Antarctica. Geophysical Research Letters, 32, L13817.

J.P. Miller B.E. Logan 2000. Sustained perchlorate degradation in an autotrophic, gas-phase, packed-bed reactor. Environmental Science & Technology, 34, 30183022.

R. Navarro-González , E. Vargas , J. De La Rosa , A.C. Raga C.P. McKay 2010. Reanalysis of the Viking results suggests perchlorate and organics at mid-latitudes on Mars. Journal of Geophysical Research, 115, 10.1029/2010JE003599.

W.H. Pollard , C. Omelon , D.T. Andersen C.P. McKay 1999. Perennial spring occurrence in the Expedition Fiord area of western Axel Heiberg Island, Canadian High Arctic. Canadian Journal of Earth Sciences, 36, 116.

J.G. Powers , A.J. Monaghan , A.M. Cayette , D.H. Bromwich , Y. Kuo K.W. Manning 2003. Real time mesoscle modeling over Antarctica: the Antarctic mesoscale prediction system. Bulletin of the American Meteorological Society, 84, 15331545.

H.M. Rietveld 1969. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystology, 2, 6571.

R.S. Sletten , B. Hallet R.C. Fletcher 2003. Resurfacing time of terrestrial surfaces by the formation and maturation of polygonal patterned ground. Journal of Geophysical Research, 108, 10.1029/2002JE001914.

P.H. Smith , L. Tamppari , R.E. Arvidson , D. Bass , D. Blaney , W. Boynton , A. Carswell , D. Catling , B. Clark , T. Duck , E. Dejong , D. Fisher , W. Goetz , P. Gunnlaugsson , M. Hecht , V. Hipkin , J. Hoffman , S. Hviid , H. Keller , S. Kounaves , C.F. Lange , M. Lemmon , M. Madsen , M. Malin , W. Markiewicz , J. Marshall , C. McKay , M. Mellon , D. Michelangeli , D. Ming , R. Morris , N. Renno , W.T. Pike , U. Staufer , C. Stoker , P. Taylor , J. Whiteway , S. Young A. Zent 2008. Introduction to special section on the Phoenix Mission: landing site characterization experiments, mission overviews, and expected science. Journal of Geophysical Research, 113, 10.1029/2008JE003083.

B. Steven , R. Léveillé , W.H. Pollard L.G. Whyte 2006. Microbial ecology and biodiversity in permafrost. Extermophiles, 10, 259267.

D.C. White , W.M. Davis , J.S. Nickels , J.D. King R.J. Bobbie 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia, 40, 5162.

A.T. Wilson 1979. Geochemical problems of the Antarctic dry areas. Nature, 280, 205208.

A.P. Zent 2008. An historical search for thin H2O films at the Phoenix landing site. Icarus, 196, 385408.

A.P. Zent , M.H. Hecht , D.R. Cobos , S.E. Wood , T.L. Hudson , S.M. Milkovich , L.P. Deflores M.T. Mellon 2010. Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. Journal of Geophysical Research, 115, 10.1029/2009JE003420.

A.P. Zent , M.H. Hecht , D.R. Cobos , G.S. Campbell , C.S. Campbell , G. Cardell , M.C. Foote , S.E. Wood M. Mehta 2009. Thermal and Electrical Conductivity Probe (TECP) for Phoenix. Journal of Geophysical Research, 114, 10.1029/2007JE00305.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 63 *
Loading metrics...

Abstract views

Total abstract views: 126 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th June 2017. This data will be updated every 24 hours.