Skip to main content Accessibility help
×
×
Home

The geochemistry of upland ponds, Taylor Valley, Antarctica

  • W. Berry Lyons (a1) (a2), Kathleen A. Welch (a1), Christopher B. Gardner (a1) (a2), Chris Jaros (a3), Daryl L. Moorhead (a4), Jennifer L. Knoepfle (a5) and Peter T. Doran (a5)...
Abstract

The McMurdo Dry Valleys of Antarctica are the largest ice-free region on the continent. These valleys contain numerous water bodies that receive seasonal melt from glaciers. For forty years, research emphasis has been placed on the larger water bodies, the permanent ice-covered lakes. We present results from the first study describing the geochemistry of ponds in the higher elevations of Taylor Valley. Unlike the lakes at lower elevations, the landscape on which these ponds lie is among the oldest in Taylor Valley. These upland ponds wax and wane in size depending on the local climatic conditions, and their ionic concentrations and isotopic composition vary annually depending on the amount of meltwater generated and their hydrologic connectivity. This study evaluates the impact of changes in summer climate on the chemistry of these ponds. Although pond chemistry reflects the initial meltwater chemistry, dissolution and chemical weathering within the stream channels, and possibly permafrost fluid input, the primary control is the dilution effect of glacier melt during warmer summers. These processes lead to differences in solute concentrations and ionic ratios between ponds, despite their nearby proximity. The change in size of these ponds over time has important consequences on their geochemical behaviour and potential to provide water and solutes to the subsurface.

Copyright
Corresponding author
lyons.142@osu.edu
References
Hide All
Angino, E.E., Armitage, K.B.Tash, J.C. 1962. Chemical stratification in Lake Fryxell, Victoria Land, Antarctica. Science, 138, 3436.
Borghini, F.Bargagli, R. 2004. Changes of major ion concentrations in melting snow and terrestrial waters from northern Victoria Land, Antarctica. Antarctic Science, 16, 107115.
Doran, P.T., McKay, C.P., Clow, G.D., Dana, G.L., Fountain, A.G., Nylen, T.Lyons, W.B. 2002. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. Journal of Geophysical Research, 107, 4772.
Drever, J.I.Smith, C.L. 1978. Cyclic wetting and drying of the soil zone as an influence on the chemistry of ground water in arid terrains. American Journal of Science, 278, 14481454.
Ebnet, A.F., Fountain, A.G.Nylen, T.H. 2005. An index model of stream flow at below freezing-temperatures in Taylor Valley, Antarctica. Annals of Glaciology, 40, 7682.
Eugster, H.P.Jones, B.F. 1979. Behavior of major solutes during closed-basin brine evolution. American Journal of Science, 279, 609631.
Foreman, C.M., Wolf, C.F.Priscu, J.C. 2004. Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry, 10, 239268.
Fountain, A.G., Nylen, T.H., Monaghan, A., Basagic, H.J.Bromwich, D. 2010. Snow in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology, 30, 633642.
Fountain, A.G., Lyons, W.B., Burkins, M.B., Dana, G.L., Doran, P.T., Lewis, K.J., McKnight, D.M., Moorhead, D., Parsons, A.N., Priscu, J.C., Wall, D.H., Wharton, R.A. JrVirginia, R.A. 1999. Physical controls on the Taylor Valley ecosystem, Antarctica. BioScience, 49, 961971.
Gooseff, M.N., Lyons, W.B., McKnight, D.M., Vaughn, B.H., Fountain, A.G.Dowling, C. 2006. A stable isotopic investigation of a polar desert hydrologic system, McMurdo Dry Valleys, Antarctica. Arctic, Antarctic, and Alpine Research, 38, 6071.
Green, W.J., Angle, M.P.Chave, K.E. 1988. The geochemistry of Antarctic streams and their role in the evolution of four lakes in the McMurdo Dry Valleys. Geochimica et Cosmochimica Acta, 52, 12651274.
Harris, K., Carey, A.E., Welch, K.A., Lyons, W.B.Fountain, A.G. 2007. Solute and isotope geochemistry of near-surface ice melt flows in Taylor Valley, Antarctica. Geological Society of America Bulletin, 199, 548555.
Haskell, T.R., Kennett, J.P., Prebble, W.M., Smith, G.Willis, I.A.G. 1965. The geology of the middle and lower Taylor Valley of south Victoria Land, Antarctica. Transactions of the Royal Society of New Zealand, Geography, 2, 169186.
Healy, M., Webster-Brown, J.G., Brown, K.L.Lane, V. 2006. Chemistry and stratification of Antarctic meltwater ponds II: inland ponds of the McMurdo Dry Valleys, Victoria Land. Antarctic Science, 18, 525533.
Horita, J. 2009. Isotopic evolution of saline lakes in the low-latitude and Polar regions. Aquatic Geochemistry, 15, 4370.
Jaros, C.L. 2002. Climatic controls on interannual variation in streamflow in Fryxell Basin, Taylor Valley, Antarctica. Msc thesis, University of Colorado, 91 pp.
Keys, J.R.Williams, K. 1981. Origin of crystalline cold desert salts in the McMurdo Region, Antarctica. Geochimica et Cosmochimica Acta, 45, 22992309.
Levy, J.S., Fountain, A.G., Gooseff, M.N., Welch, K.A.Lyons, W.B. In press. Water tracks and permafrost in Taylor Valley, Antarctica: Extensive and shallow groundwater connectivity in a cold desert ecosystem. Geological Society of America Bulletin.
Lyons, W.B., Welch, K.A., Neumann, K., Moorhead, D.McKnight, D.M. 1998. Geochemical linkages among glaciers, streams and lakes within the Taylor Valley, Antarctica. Antarctic Research Series, 72, 7792.
Lyons, W.B., Welch, K.A., Carey, A.E., Doran, P.T., Wall, D.H., Virginia, R.A., Fountain, A.G., Csatho, B.Tremper, C. 2005. Groundwater seeps in Taylor Valley, Antarctica: an example of a subsurface melt event. Annals of Glaciology, 40, 200206.
Marchant, D.R.Denton, G.H. 1996. Miocene and Pliocene paleoclimate of the Dry Valleys region, southern Victoria Land: a geomorphological approach. Marine Micropaleontology, 27, 253271.
McKnight, D.M., Niyogi, D.K., Alger, A.S., Bomblies, A., Conovitz, P.A.Tate, C.M. 1999. Dry Valleys streams in Antarctica: ecosystems waiting for water. Bioscience, 49, 985995.
Moorhead, D.L. 2007. Mesoscale dynamics of ephemeral wetlands in the Antarctic Dry Valleys: implications to production and distribution of organic matter. Ecosystems, 10, 8795.
Moorhead, D.L., Barrett, J.E., Virginia, R.A., Wall, D.W.Porazinska, D. 2003. Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biology, 26, 567576.
Smol, J.P.Douglas, M.S.V. 2007. Crossing the final ecological threshold in high Arctic ponds. Proceedings of the National Academy of Sciences, 104, 12 39512 397.
Timperley, M.H. 1997. A simple temperature-based model for the chemistry of melt-water ponds in the Darwin Glacier area, 80 degrees S. In Lyons, W.B., Howard-Williams, C.&Hawes, I.,eds. Ecosystem processes in Antarctic ice-free landscapes. Rotterdam: Balkema, 197206.
Torii, T., Nakaya, S., Matsubaya, O., Matsumoto, G.I., Masuda, N., Kawano, T.Murayama, H. 1989. Chemical characteristics of pond waters in the Labyrinth of southern Victoria Land, Antarctica. Hydrobiologia, 172, 255264.
Wait, B.R., Webster-Brown, J.G., Brown, K.L., Healy, M.Hawes, I. 2006. Chemistry and stratification of Antarctic metwater ponds I: coastal ponds near Bratina Island, McMurdo Ice Shelf. Antarctic Science, 18, 515524.
Webster, J.G., Brown, K.L.Vincent, W.F. 1994. Geochemical processes affecting meltwater chemistry and the formation of saline ponds in the Victoria Valley and Bull Pass region, Antarctica. Hydrobiologia, 281, 171186.
Webster-Brown, J., Gall, M., Gibson, J., Wood, S.Hawes, I. 2010. The biogeochemistry of meltwater habitats in the Darwin Glacier region (80°S), Victoria Land, Antarctica. Antarctic Science, 22, 646661.
Welch, K.A., Neumann, K., McKnight, D.M., Fountain, A.G.Lyons, W.B. 2000. Chemistry and lake dynamics of the Taylor Valley lakes, Antarctica: the importance of long-term monitoring. In Davison, W., Howard-Williams, C.&Broady, P., eds. Antarctic ecosystems: models for wider ecological understanding. Christchurch: Caxton Press, 282287.
Welch, K.A., Lyons, W.B., Graham, E., Neumann, K., Thomas, J.M.Mikesell, D. 1996. The determination of major element chemistry in terrestrial waters from Antarctica using ion chromatography. Journal of Chromatography, A739, 257263.
Welch, K.A., Lyons, W.B., Whisner, C., Gardner, C.B., Gooseff, M.N., McKnight, D.M.Priscu, J.C. 2010. Spatial variations in the geochemistry of glacial meltwater streams in Taylor Valley, Antarctica. Antarctic Science, 22, 662672.
Wharton, R.A., McKay, C.P., Mancinelli, R.L.Simmons, G.M. 1987. Perennial N-2 supersaturation in an Antarctic lake. Nature, 325, 343345.
Wilch, T.I., Denton, G.H., Lux, D.R.McIntosh, W.C. 1993. Limited Pliocene glacier extent and surface uplift in middle Taylor Valley, Antarctica. Geographiska Annaler, 75A, 331351.
Witherow, R.A., Bertler, N.A.N., Welch, K.A., Lyons, W.B., Mayewski, P.A., Sneed, S.B., Nylen, T., Handley, M.J.Fountain, A. 2006. The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape: evidence from snow pit analysis. Antarctic Science, 18, 497505.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed