Skip to main content Accessibility help
×
×
Home

Geology of the Nelson Limestone, Postel Nunatak, Patuxent Range, Antarctica

  • Kevin Ray Evans (a1), Lawrence W. McKenna (a2), Bruce S. Lieberman (a3), Wesley Donald Weichert (a1) and Kenneth G. Macleod (a4)...

Abstract

Postel Nunatak in the Patuxent Range has been previously mapped as Nelson Limestone but there was no biostratigraphic support for that interpretation until now. We confirm that limestone exposures at Postel Nunatak are at least partly correlated with the Nelson Limestone of the Neptune Range, 160 km north-east, and are not correlative with the lower Cambrian Schneider Hills Limestone of the Argentina Range. Upper beds have yielded the trilobites Suludella? davnii Palmer & Gatehouse, 1972 and Solenopleura pruina Palmer & Gatehouse, 1972, which provide a basis for assignment to Cambrian Series 3 (late middle Cambrian), within the Drumian or lower Guzhangian stages. Limestone beds were deposited in a shallow marine setting, ranging from supratidal to lagoonal facies with rare subtidal intervals. These settings contrast with deeper water facies of the Neptune Range. Despite limitations in sampling density, isotopic analysis indicates that a greater than +2.5‰ shift in δ13C is consistent with δ13C trends documented for the Drumian Stage. Because the upper and lower contacts at Postel Nunatak are covered by snow and ice, the relationship with rocks mapped as the Patuxent Formation in the Patuxent Range remains uncertain, but part of it may belong to the Precambrian Hannah Ridge Formation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Geology of the Nelson Limestone, Postel Nunatak, Patuxent Range, Antarctica
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Geology of the Nelson Limestone, Postel Nunatak, Patuxent Range, Antarctica
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Geology of the Nelson Limestone, Postel Nunatak, Patuxent Range, Antarctica
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

References

Hide All
Ager, D.V. 1974. Storm deposits in Jurassic of Moroccan High Atlas. Palaeogeography Palaeoclimatology Palaeoecology, 15, 8393.
Babcock, L.E., Robison, R.A., Rees, M.N., Peng, S.C. & Saltzman, M.R. 2007. The global boundary stratotype section and point (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA. Episodes, 30, 8595.
Bassett-Butt, L. 2016. Systematics, biostratigraphy and biogeography of brachiopods and other fossils from the middle Cambrian Nelson Limestone, Antarctica. Geologiska Föreningen i Stockholm Förhandlingar (GFF), 138, 377392.
Bentley, C.J., Jago, J.B. & Cooper, R.A. 2016. Cambrian Series 3 (Drumian) trilobites from limestone olistoliths, Reilly Ridge, northern Victoria Land, Antarctica. In Laurie, J.R., Percival, I.G., Jago, J.B., Paterson, J.R. & Brock, G.A., eds. Cambro-Ordovician studies VI. Hornsby, NSW: Geological Society of Australia, 5174.
Burton-Johnson, A., Black, M., Fretwell, P.T. & Kaluza-Gilbert, J. 2016. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere, 10, 16651677.
Cooper, R.A., Jago, J.B. & Begg, J.G. 1996. Cambrian trilobites from northern Victoria Land, Antarctica and their stratigraphic implications. New Zealand Journal of Geology and Geophysics, 39, 363387.
Curtis, M.L. 2002. Palaeozoic to Mesozoic polyphase deformation of the Patuxent Range, Pensacola Mountains, Antarctica. Antarctic Science, 14, 175183.
Curtis, M.L. & Storey, B.C. 2003. Early Palaezoic near-surface deformation in the Neptune Range, Antarctica: implications for the Ross and Gondwanian orogenies. Journal of the Geological Society, 160, 629642.
Curtis, M.L., Millar, I.L., Storey, B.C. & Fanning, M. 2004. Structure and geochronological constraints of early Ross orogenic deformation in the Pensacola Mountains, Antarctica. Geological Society of America Bulletin, 116, 619636.
Encarnación, J., Rowell, A.J. & Grunow, A.M. 1999. A U-Pb age for the Cambrian Taylor Formation, Antarctica: implications for the Cambrian time scale. Journal of Geology, 107, 497504.
Enos, P. & Perkins, R.D. 1979. Evolution of Florida Bay from island stratigraphy. Geological Society of America Bulletin, 90, 5983.
Evans, K.R., Rowell, A.J. & Rees, M.N. 1995. Sea-level changes and stratigraphy of the Nelson Limestone (middle Cambrian), Neptune Range, Antarctica. Journal of Sedimentary Research - Stratigraphy and Global Studies, B65, 3245.
Faure, G. & Mensing, T.M. 2010. The Transantarctic Mountains. Rocks, ice, meteorites and water. New York, NY: Springer, 804 pp.
Federico, L., Crispini, L., Capponi, G. & Bradshaw, J.D. 2009. The Cambrian Ross Orogeny in northern Victoria Land (Antarctica) and New Zealand: a synthesis. Gondwana Research, 15, 188196.
Ginsburg, R.N. ed. 1975. Tidal deposits: a casebook of recent examples and fossil counterparts. New York, NY: Springer, 432 pp.
Howley, R.A. & Jiang, G.Q. 2010. The Cambrian Drumian carbon isotope excursion (DICE) in the Great Basin, western United States. Palaeogeography Palaeoclimatology Palaeoecology, 296, 138150.
Jago, J.B. & Cooper, R.A. 2007. Middle Cambrian trilobites from Reilly Ridge, northern Victoria Land, Antarctica. Memoirs of the Association of Australasian Palaeontologists, 34, 473487.
Jago, J.B. & Webers, G.F. 1992. Middle Cambrian trilobites from the Ellsworth Mountains, West Antarctica. In Webers, G.F., Craddock, C. & Splettstoesser, J.F., eds. Geology and paleontology of the Ellsworth Mountains, West Antarctica. Boulder, CO: Geological Society of America, 101124.
Jago, J.B., Bentley, C.J. & Cooper, R.A. 2011. A Cambrian Series 3 (Guzhangian) fauna with Centropleura from northern Victoria Land, Antarctica. Memoirs of the Association of Australasian Palaeontologists, 42, 1535.
Lieberman, B.S. 2004. Revised biostratigraphy, systematics, and paleobiogeography of the trilobites from the Middle Cambrian Nelson Limestone, Antarctica. Lawrence, KS: University of Kansas Paleontological Institute, 23 pp.
O’Neil, J.R. 1987. Preservation of H, C and O isotopic ratios in the low temperature environment. In Kyser, T.K., ed. Stable isotope geochemistry of low temperature fluids. Mineralogical Association of Canada Short Course Handbook, 13, 85128.
Palmer, A.R. & Gatehouse, C.G. 1972. Early and middle Cambrian trilobites from Antarctica. United States Geological Survey Professional Paper, 456–D, 136.
Palmer, A.R. & Rowell, A.J. 1995. Early Cambrian trilobites from the Shackleton Limestone of the central Transantarctic Mountains. Journal of Paleontology, 69(Sup. 2), 128.
Rowell, A.J., Rees, M.N. & Evans, K.R. 1992. Evidence of major middle Cambrian deformation in the Ross Orogen, Antarctica. Geology, 20, 3134.
Rowell, A.J., van Schmus, W.R., Storey, B.C., Fetter, A.H. & Evans, K.R. 2001. Latest Neoproterozoic to mid-Cambrian age for the main deformation phases of the Transantarctic Mountains: new stratigraphic and isotopic constraints from the Pensacola Mountains, Antarctica. Journal of the Geological Society, 158, 295308.
Schmidt, D.L. & Ford, A.B. 1969. Geology of the Pensacola and Thiel mountains: Antarctica map folio series, folio 12 — Geology. New York, NY: American Geographical Society, plate V.
Schmidt, D.L., Williams, P.L. & Nelson, W.H. 1978. Geologic map of the Schmidt Hills quadrangle and part of the Gambacorta Peak quadrangle, Pensacola Mountains, Antarctica. US Antarctic Research Program, Map A-8. Reston, VA: US Geological Survey.
Schmidt, D.L., Dover, J.H., Ford, A.B. & Brown, R.D. 1964. Geology of the Patuxent Mountains. In Adie, R.J., ed. Antarctic geology. Amsterdam: North Holland Publishing Company, 276283.
Soloviev, I.A. & Grikurov, G.E. 1978. Discovery of the first middle Cambrian trilobites from the Shackleton Range. Antarktika, 17, 187198.
Soloviev, I.A. & Grikurov, G.E. 1979. New findings about Cambrian trilobites from the Shackleton and Argentina ranges. USSR Academy of Sciences, Committee on Antarctic Research, ‘Antarctica - The Committee Reports’, 18, 5473.
Soloviev, I.A., Popov, L.E. & Samsonov, U.V. 1984. New data on the upper Cambrian fauna of the Ellsworth and Pensacola mountains (western Antarctica). Antarktika, 23, 4671.
Storey, B.C., MacDonald, D.I.M., Dalziel, I.W.D., Isbell, J.L. & Millar, I.L. 1996. Early Paleozoic sedimentation, magmatism, and deformation in the Pensacola Mountains, Antarctica: the significance of the Ross Orogeny. Geological Society of America Bulletin, 108, 685707.
Stump, E. 1995. The Ross Orogen of the Transantarctic Mountains. Cambridge: Cambridge University Press, 284 pp.
Tullberg, S.A. 1880. Om Agnostus-arterna i de Kambriska aflagringame vid Andrarum. Sveriges Geologiska Undersökning (Series C), 42, 137.
Van Schmus, W.R., McKenna, L.W. III, Gonzalez, D.A., Fetter, A.H. & Rowell, A.J. 1997. U-Pb geochronology of parts of the Pensacola, Thiel, and Queen Maud mountains, Antarctica. In Ricci, C.A., ed. The Antarctic region: geological evolution and processes. Siena: Terra Antarctica Publication, 187200.
Wilson, J.L. 1975. Carbonate facies in geologic history. New York, NY: Springer, 471 pp.
Wolfart, R. 1994. Middle Cambrian faunas (Brachiopoda, Mollusca, Trilobita) from exotic limestone blocks, Reilly Ridge, north Victoria Land, Antarctica: their biostratigraphic and palaeogeographic significance. Geologisches Jahrbuch (Reihe B), 84, 1161.
Zhu, M.-Y., Babcock, L.E. & Peng, S.-C. 2006. Advances in Cambrian stratigraphy and paleontology: integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld, 15, 217222.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed