Skip to main content Accessibility help

High-resolution compositional remote sensing of the Transantarctic Mountains: application to the WorldView-2 dataset

  • M.R. Salvatore (a1)


The WorldView-2 (WV2) instrument, operated by DigitalGlobe, is the only high-resolution multispectral sensor currently capable of imaging the entirety of the Transantarctic Mountains (TAM), making it a valuable resource for remote compositional investigations. Through the utility of both field- and laboratory-based verification techniques, this study shows that biotic and abiotic chemical variations can be readily observed and mapped remotely. Within the McMurdo Dry Valleys (MDV), primary compositional variability, intra-lithologic compositional heterogeneity and variations in surface weathering and oxidation can be successfully identified and mapped, providing confidence in both the spectral capabilities of the WV2 instrument and the methodologies associated with calibrating and correcting these data. These studies within the MDV provide confidence in extending these analyses to more remote regions of the TAM, including the vicinity of Shackleton Glacier. The identification of comparable geochemical variations in these remote locations provides valuable additions to the currently available geologic maps at much lower spatial resolutions. This work confirms the utility of the WV2 instrument to identifying, quantifying and mapping geochemical variations throughout the TAM, supporting future field work and providing geospatial context for localized field and laboratory analyses.


Corresponding author


Hide All
Alger, A.S., McKnight, D.M., Spaulding, S.A., Tate, C.M., Shupe, G.H., Welch, K.A., Edwards, R., Andrews, E.D. & House, H.R. 1997. Ecological processes in a cold desert ecosystem: the abundance and species distribution of algal mats in glacial meltwater streams in Taylor Valley, Antarctica. Institute of Arctic and Alpine Research - Occasional Paper, 51, 1102.
Allen, C.C. & Conca, J.L. 1991. Weathering of basaltic rocks under cold, arid conditions: Antarctica and Mars. Proceedings of the Lunar and Planetary Science Conference, 21, 711717.
Barrett, P.J. 1981. History of the Ross Sea region during the deposition of the Beacon Supergroup 400 – 180 million years ago. Journal of the Royal Society of New Zealand, 11, 447458.
Brook, E.J., Kurz, M.D., Ackert, R.P., Denton, G.H., Brown, E.T., Raisbeck, G.M. & Yiou, F. 1993. Chronology of Taylor Glacier advances in Arena Valley, Antarctica, using in situ cosmogenic 3He and 10Be. Quaternary Research, 39, 1123.
Burns, R.G. 1993. Mineralogic applications of crystal field theory. New York, NY: Cambridge University Press, 551 pp.
Campbell, I.B. & Claridge, G.G.C. 1987. Antarctica: soils, weathering processes and environment. Amsterdam: Elsevier, 406 pp.
Chander, G., Markham, B.L. & Helder, D.L. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893903.
Clark, R.N. 1999. Chapter 1: spectroscopy of rocks and minerals, and principles of spectroscopy. In Rencz, A., ed. Remote sensing for the earth sciences. New York, NY: John Wiley, 358.
Clark, R.N., Swayze, G.A., Wise, R., Livo, K.E., Hoefen, T.M., Kokaly, R.F. & Sutley, S.J. 2007. USGS digital spectral library splib06a. US Geological Survey, data series 231.
Collinson, J.W. & Hammer, W.R. 1996. New observations on the Triassic stratigraphy of the Shackleton Glacier region. Antarctic Journal of the United States, 31(1), 912.
Cox, S.C., Turnbull, I.M., Isaac, M.J., Townsend, D.B. & Smith Lyttle, B. 2012. Geology of southern Victoria Land, Antarctica. 1:250 000. Lower Hutt, New Zealand: New Zealand Institute of Geological and Nuclear Sciences, Geological map 22, 1 sheet +135 pp.
Dickson, J.L., Head, J.W., Levy, J.S. & Marchant, D.R. 2013. Don Juan Pond, Antarctica: near-surface CaCl2-brine feeding Earth’s most saline lake and implications for Mars. Scientific Reports, 3, 10.1038/srep01166.
Fountain, A.G., Lyons, W.B., Burkins, M.B., Dana, G.L., Doran, P.T., Lewis, K.J., McKnight, D.M., Moorhead, D.L., Parsons, A.N., Priscu, J.C., Wall, D.H., Wharton, R.A. Jr. & Virginia, R.A. 1999. Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience, 49, 961971.
Gaffey, S.J. & Bronnimann, C.E. 1993. Effects of bleaching on organic and mineral phases in biogenic carbonates. Journal of Sedimentary Research, 63, 752754.
Gaffey, S.J., McFadden, L.A., Nash, D. & Pieters, C.M. 1993. Ultraviolet, visible, and near-infrared reflectance spectroscopy: laboratory spectra of geologic materials. In Pieters, C.M. & Englert, P.A.J., eds. Remote geochemical analysis: elemental and mineralogical composition. Cambridge: Cambridge University Press, 4377.
Glasby, G.P., McPherson, J.G., Kohn, B.P., Johnston, J.H., Keys, J.R., Freeman, A.G. & Tricker, M.J. 1981. Desert varnish in southern Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 24, 389397.
Gooseff, M.N., Barrett, J.E., Doran, P.T., Fountain, A.G., Lyons, W.B., Parsons, A.N., Porazinska, D.L., Virginia, R.A. & Wall, D.H. 2003. Snow-patch influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. Arctic, Antarctic and Alpine Research, 35, 9199.
Hammer, W.R., Hickerson, W.J. & Collinson, J.W. 1996. Preliminary analysis of Triassic vertebrates from the Shackleton Glacier region. Antarctic Journal of the United States, 31(1), 89.
Kneizys, F.X., Shettle, E.P., Abreu, L.W., Chetwynd, J.H. & Anderson, G.P. 1988. Users’ guide to LOWTRAN7. Hanscom Air Force Base, MA: Air Force Geophysics Laboratory, 146 pp.
Licht, K.J. & Palmer, E.F. 2013. Erosion and transport by Byrd Glacier, Antarctica during the Last Glacial Maximum. Quaternary Science Reviews, 62, 3248.
Marchant, D.R. & Head III, J.W. III 2007. Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus, 192, 187222.
Marchant, D.R., Denton, G.H. & Swisher III, C.C. III 1993. Miocene-Pliocene-Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica. Geografiska Annaler - Physical Geography, 75A, 269302.
Marchant, D.R., Mackay, S., Lamp, J.L., Hayden, A.T. & Head, J.W. 2013. A review of geomorphic processes and landforms in the Dry Valleys of southern Victoria Land: implications for evaluating climate change and ice sheet stability. In Hambrey, M.J., Barker, P.F., Barrett, P.J., Bowman, V., Davies, B., Smellie, J.L. & Tranter, M., eds. Antarctic paleoenvironments and earth-surface processes. Special Publication of the Geological Society of London, No. 381, 10.1144/SP381.10.
Marsh, B. 2004. A magmatic mush column rosetta stone: the McMurdo Dry Valleys of Antarctica. Eos, Transactions, American Geophysical Union, 85, 497508.
McElroy, C.T. & Rose, G. 1987. Geology of the Beacon Heights area, southern Victoria Land, Antarctica. 1:50 000. Wellington, New Zealand: New Zealand Department of Scientific and Industrial Research, miscellaneous series map 15, 1 sheet + 47 pp.
McGregor, V.R. & Wade, F.A. 1969. Geology of the Queen Maud Mountains. 1:1 000 000. American Geographical Society map folio series 12: sheet 16.
McKnight, D.M., Niyogi, D.K., Alger, A.S., Bomblies, A., Conovitz, P.A. & Tate, C.M. 1999. Dry Valley streams in Antarctica: ecosystems waiting for water. Bioscience, 49, 985995.
McLoughlin, S., Lindström, S. & Drinnan, A.N. 1997. Gondwanan floristic and sedimentological trends during the Permian-Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, East Antarctica. Antarctic Science, 9, 281298.
McManus, H.A., Taylor, E.L., Taylor, T.N. & Collinson, J.W. 2002. A petrified Glossopteris flora from Collinson Ridge, central Transantarctic Mountains: Late Permian or Early Triassic? Review of Palaeobotany and Palynology, 120, 233246.
Morris, R.V., Golden, D.C., Bell, J.F., Lauer, H.V. & Adams, J.B. 1993. Pigmenting agents in Martian soils: inferences from spectral, Mössbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. Geochimica et Cosmochimica Acta, 57, 45974609.
Mustard, J.F. & Pieters, C.M. 1989. Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. Journal of Geophysical Research - Solid Earth and Planets, 94, 13 61913 634.
Salvatore, M.R., Mustard, J.F., Head III, J.W. III, Marchant, D.R. & Wyatt, M.B. 2013a. Characterization of spectral and geochemical variability within the Ferrar Dolerite of the McMurdo Dry Valleys, Antarctica: weathering, alteration, and magmatic processes. Antarctic Science, 26, 4968.
Salvatore, M.R., Mustard, J.F., Head, J.W., Cooper, R.F., Marchant, D.R. & Wyatt, M.B. 2013b. Development of alteration rinds by oxidative weathering processes in Beacon Valley, Antarctica, and implications for Mars. Geochimica et Cosmochimica Acta, 115, 137161.
Schäfer, M., Baur, H., Denton, G.H., Ivy-Ochs, S., Marchant, D.R., Schluchter, C. & Wieler, R. 2000. The oldest ice on Earth in Beacon Valley, Antarctica: new evidence from surface exposure dating. Earth and Planetary Science Letters, 179, 9199.
Staiger, J.W., Marchant, D.R., Schaefer, J.M., Oberholzer, P., Johnson, J.V., Lewis, A.R. & Swanger, K.M. 2006. Plio-Pleistocene history of Ferrar Glacier, Antarctica: implications for climate and ice sheet stability. Earth and Planetary Science Letters, 243, 489503.
Sugden, D.E., Denton, G.H. & Marchant, D.R. 1995. Landscape evolution of the Dry Valleys, Transantarctic Mountains: tectonic implications. Journal of Geophysical Research - Solid Earth, 100, 99499967.
Taylor, G. 1914. Physiography and glacial geology of East Antarctica. The Geographical Journal, 44, 365382.
Updike, T. & Comp, C. 2010. Radiometric use of WorldView-2 imagery: technical note. Longmont, CO: DigitalGlobe, 16 pp.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed