Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T19:24:10.365Z Has data issue: false hasContentIssue false

Noble gas and stable isotope geochemistry of thermal fluids from Deception Island, Antarctica

Published online by Cambridge University Press:  11 February 2009

Minoru Kusakabe*
Affiliation:
Korea Polar Research Institute, KORDI, Songdo Techno Park, Incheon 406-840, Korea
Keisuke Nagao
Affiliation:
Laboratory for Earthquake Chemistry, University of Tokyo, Tokyo 113-0033, Japan
Takeshi Ohba
Affiliation:
Volcanic Fluid Research Center, Tokyo Institute of Technology, Tokyo 152-8551, Japan
Jung Hun Seo
Affiliation:
School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, Korea
Sung-Hyun Park
Affiliation:
Korea Polar Research Institute, KORDI, Songdo Techno Park, Incheon 406-840, Korea
Jong Ik Lee
Affiliation:
Korea Polar Research Institute, KORDI, Songdo Techno Park, Incheon 406-840, Korea
Byong-Kwon Park
Affiliation:
Korea Polar Research Institute, KORDI, Songdo Techno Park, Incheon 406-840, Korea
*
*currently at Department of Environmental Biology and Chemistry, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japankusakabe@sci.u-toyama.ac.jp

Abstract

New stable isotope and noble gas data obtained from fumarolic and bubbling gases and hot spring waters sampled from Deception Island, Antarctica, were analysed to constrain the geochemical features of the island's active hydrothermal system and magmatism in the Bransfield back-arc basin. The 3He/4He ratios of the gases (< 9.8 × 10-6), which are slightly lower than typical MORB values, suggest that the Deception Island magma was generated in the mantle wedge of a MORB-type source but the signature was influenced by the addition of radiogenic 4He derived from subducted components in the former Phoenix Plate. The N2/He ratios of fumarolic gas are higher than those of typical mantle-derived gases suggesting that N2 was added during decomposition of sediments in the subducting slab. The δ13C values of -5 to -6‰ for CO2 also indicate degassing from a MORB-type mantle source. The H2/Ar- and SiO2 geothermometers indicate that the temperatures in the hydrothermal system below Deception Island range from ~150°C to ~300°C. The δD and δ18O values measured from fumarolic gas and hot spring waters do not indicate any contribution of magmatic water to the samples. The major ionic components and δD-δ18O-δ34S values indicate that hot spring waters are a mixture of local meteoric water and seawater. Mn and SiO2 in spring waters were enriched relative to seawater reflecting water-rock interaction at depth.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aka, F.T., Kusakabe, M., Nagao, K. & Tanyileke, G.T. 2001. Noble gas isotopic compositions and water/gas chemistry of soda springs from the islands of Bioko, Sao Tome and Annobon, along with Cameroon Volcanic Line, West Africa. Applied Geochemistry, 16, 323338.CrossRefGoogle Scholar
Ballentine, C.J. & Burnard, P.G. 2002. Production, release and transport of noble gases in continental crust. In Porcelli, D., Ballentine, C.J. & Wieler, R., eds. Noble gases in geochemistry and cosmochemistry. Reviews in Mineralogy and Geochemistry, 47, 481537.CrossRefGoogle Scholar
Ballentine, C.J., Burgess, R. & Marty, B. 2002. Tracing fluid origin, transport and interaction in the crust. In Porcelli, D., Ballentine, C.J. & Wieler, R., eds. Noble gases in geochemistry and cosmochemistry. Reviews in Mineralogy and Geochemistry, 47, 539614.CrossRefGoogle Scholar
Chako, T., Cole, D.R. & Horita, J. 2001. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applied to geologic systems. In Valley, J.W. & Cole, D.R., eds. Stable isotope geochemistry. Reviews in Mineralogy and Geochemistry, 431, 181.Google Scholar
Choe, W.H., Lee, J.I., Lee, M.J., Hur, S.D. & Jin, Y.K. 2007. Origin of E-MORB in a fossil spreading center: the Antarctic–Phoenix Ridge, Drake Passage, Antarctica. Geoscience Journal, 11, 185199.CrossRefGoogle Scholar
Correig, A.M., Urquizu, M., Vila, J. & Marti, J. 1997. Analysis of the temporal occurrence of seismicity at Deception Island (Antarctica): a nonlinear approach. Pure and Applied Geophysics, 149, 553574.CrossRefGoogle Scholar
Lide, D.R.CRC Handbook of Chemistry and Physics, 74th ed.Boca Raton, FL: CRC Press.Google Scholar
Fournier, R.O. 1991. Water geothermometers applied to geothermal energy. In D'Amore, F.ed. Application of geochemistry in geothermal reservoir development. Rome: UNITAR/UNDP Centre for Small Energy Resources, 3769.Google Scholar
Fournier, R.O. 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology, 94, 11931211.CrossRefGoogle Scholar
Fournier, R.O. & Potter, R.W. II 1982. An equation correlating the solubility of quartz in water from 25°C to 900°C at pressures up to 10,000 bars. Geochimica et Cosmochimica Acta, 46, 19691974.CrossRefGoogle Scholar
Fretzdorff, S., Worthington, T.J., Haase, K.M., Hekinian, R., Franz, L., Keller, R.A. & Stoffers, P. 2004. Magmatism in the Bransfield Basin: Rifting of the South Shetland Arc? Journal of Geophysical Research, 109, 10.1029/2004JB003046.CrossRefGoogle Scholar
Fukumoto, H., Nagao, K. & Matsuda, J. 1986. Noble gas studies on the host phase of high 3He/4He ratios in deep-sea sediments. Geochimica et Cosmochimica Acta, 50, 22452253.CrossRefGoogle Scholar
Giggenbach, W.F. 1987. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry, 2, 143161.CrossRefGoogle Scholar
Giggenbach, W.F. 1991. Chemical techniques in geothermal exploration. In D'Amore, F., ed. Application of geochemistry in geothermal reservoir development. Rome: UNITAR/UNDP Centre for Small Energy Resources, 119144.Google Scholar
Giggenbach, W.F. 1997. The origin and evolution of fluids in magmatic-hydrothermal systems. In Barnes, H.L., ed. Geochemistry of Hydrothermal Ore Deposits, 3rd ed.New York: John Wiley, 737796.Google Scholar
Graham, D.W. 2002. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. In Porcelli, D., Ballentine, C.J. & Wieler, R., eds. Noble gases in geochemistry and cosmochemistry. Reviews in Mineralogy and Geochemistry, 47, 247317.CrossRefGoogle Scholar
Hilton, D.R., Fischer, T.P. & Marty, B. 2002. Noble gases and volatile recycling at subduction zones. In Porcelli, D., Ballentine, C.J. & Wieler, R., eds. Noble gases in geochemistry and cosmochemistry. Reviews in Mineralogy and Geochemistry, 47, 319370.CrossRefGoogle Scholar
Hilton, D.R., Hammerschmidt, K., Loock, G. & Friedrichsen, H. 1993. Helium and argon isotope systematics of the central Lau Basin and Valu Fa Ridge: evidence of crust/mantle interactions in a back-arc basin. Geochimica et Cosmochimica Acta, 57, 28192841.CrossRefGoogle Scholar
Horita, J., Cole, D.R. & Wesolowski, D.J. 1993. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solutions to 350°C. Geochimica et Cosmochimica Acta, 59, 11391151.CrossRefGoogle Scholar
Ibáñez, J.M., Del Pezzo, E., Almendros, J., La Rocca, M., Alguacil, G., Ortiz, R. & Garcia, A. 2000. Seismovolcanic signals at Deception Island volcano, Antarctica: wave field analysis and source modelling. Journal of Geophysical Research, 105, 13 90513 931.CrossRefGoogle Scholar
Ishibashi, J., Sano, Y., Wakita, H., Gamo, T., Tsutsumi, M. & Sakai, H. 1995. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough back arc basin, southeast of Japan. Chemical Geology, 123, 115.CrossRefGoogle Scholar
Keller, R.A., Fisk, M.R., Smellie, J.L., Strelin, J.A., Lawver, L.A. & White, W.M. 2002. Geochemistry of back-arc basin volcanism in Bransfield Strait, Antarctica: subducted contributions and along-axis variations. Journal of Geophysical Research, 107, 10.1029/2001JB000444.Google Scholar
Kipfer, R., Aeschbah-Hertig, W., Peeters, F. & Stute, M. 2002. Noble gases in lakes and ground waters. In Porcelli, D., Ballentine, C.J. & Wieler, R., eds. Noble gases in geochemistry and cosmochemistry. Reviews in Mineralogy and Geochemistry, 47, 615700.CrossRefGoogle Scholar
Kita, I., Nitta, K., Nagao, K., Taguchi, S. & Koga, A. 1993. Difference in N2/Ar ratio of magmatic gases from northeast and southwest Japan: new evidence for different states of plate subduction. Geology, 21, 391394.2.3.CO;2>CrossRefGoogle Scholar
Klinkhammer, G.P., Chin, C.S., Keller, R.A., Dahlmann, A., Sahling, H., Sarthou, G., Petersen, S., Smith, F. & Wilson, C. 2001. Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica. Earth and Planetary Science Letters, 193, 395407.CrossRefGoogle Scholar
Kraus, S. 2005. Magmatic dyke systems of the South Shetland Islands volcanic arc (West Antarctica): reflections of the geodynamic history. PhD thesis, University of Munich, 160 pp. (available online at http://edoc.ub.uni-muenchen.de/archive/00003827/).Google Scholar
Kusakabe, M., Ohwada, M., Satake, H., Nagao, K. & Kawasaki, I. 2003. Helium isotope ratios and geochemistry of volcanic fluids from the Norikura Volcanic chain, central Japan: implications for crustal structures and seismicity. Society of Economic Geologists Special Publication, 10, 7589.Google Scholar
Lee, M.J., Lee, J.I., Choe, W.H. & Park, C.-H. 2008. Trace element and isotopic evidence for temporal changes of the mantle sources in the South Shetland Islands, Antarctica. Geochemical Journal, 42, 207219.CrossRefGoogle Scholar
Macpherson, C.G., Hilton, D.R., Sinton, J.M., Poreda, R.J.& Craig, H. 1998. High 3He/4He ratios in the Manus backarc basin: implications for mantle mixing and the origin of plumes in the western Pacific Ocean. Geology, 26, 10071010.2.3.CO;2>CrossRefGoogle Scholar
Maestro, A., Somoza, L., Rey, J., Martinez-Frias, J. & Lopez-Martinez, J. 2007. Active tectonics, fault patterns, and stress field of Deception Island: a response to oblique convergence between the Pacific and Antarctic plates. Journal of South American Earth Sciences, 23, 256268.CrossRefGoogle Scholar
Marty, B. & Jambon, A. 1987. C/3He in volatile fluxes from the solid Earth: implications for carbon geodynamics. Earth and Planetary Science Letters, 83, 1626.CrossRefGoogle Scholar
Matsuo, S., Suzuki, M. & Mizutani, Y. 1978. Nitrogen to argon ratio in volcanic gases. Advances in Earth and Planetary Sciences, 3, 1725.Google Scholar
Nishio, Y., Sasaki, S., Gamo, T., Hiyagon, H. & Sano, Y. 1998. Carbon and helium isotope systematics of North Fiji Basin basalt glasses: carbon geochemical cycle in the subduction zone. Earth and Planetary Science Letters, 154, 127138.CrossRefGoogle Scholar
Orsi, A.H. & Whitworth, T. III 2005. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). Vol. 1: Southern Ocean. College Station, TX: Texas A&M University.Google Scholar
Ortiz, R., Valentin, A. & Grimalt, J. 1987. Actividad fumaroliana en Decepcion. Estudio preliminary. II Symposio Espanol de Estudios Antarticos. Madrid: CSIC, 229237. [Not seen].Google Scholar
Ozima, M. & Alexander, E.C. Jr 1976. Rare gas fractionation patterns in terrestrial samples and the earth-atmosphere evolution model. Reviews of Geophysics and Space Physics, 14, 385390.CrossRefGoogle Scholar
Ozima, M. & Podosek, F.A. 2002. Noble gas geochemistry. Cambridge: Cambridge University Press, 286 pp.Google Scholar
Park, M., Dziak, R.P., Matsumoto, H., Bohnenstiehl, D.R., Haxel, J.H. & Lee, W.S. 2007. Hydroacoustic monitoring of the Bransfield Strait and Drake Passage, Antarctica: a first analysis of seafloor seismicity and cryogenic acoustic sources. Proceedings 14th KOPRI international symposium on polar sciences: Polar Regions in Global Change. Songdo Techno Park, Incheon, Korea, 4247.Google Scholar
Pearce, J.A., Baker, P.E., Harvey, P.K. & Luff, I.W. 1995. Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the South Sandwich island arc. Journal of Petrology, 36, 10731109.CrossRefGoogle Scholar
Poreda, R.J. & Craig, H. 1992. He and Sr isotopes in the Lau basin mantle - depleted and primitive mantle components. Earth and Planetary Science Letters, 113, 487493.CrossRefGoogle Scholar
Rey, J., Somoza, L. & Martínez-Frías, J. 1995. Tectonic, volcanic, and hydrothermal event sequence on Deception Island (Antarctica). Geo-Marine Letters, 15, 18.CrossRefGoogle Scholar
Sano, Y. & Marty, B. 1995. Origin of carbon in fumarolic gas from island arcs. Chemical Geology, 119, 265274.CrossRefGoogle Scholar
Schlosser, P., Suess, E., Bayer, R. & Rhein, M. 1988. 3He in the Bransfield Strait waters: indication of local injection from back-arc rifting. Deep-Sea Research, 35, 19191935.CrossRefGoogle Scholar
Shaw, A.M., Hilton, D.R., Macpherson, C.G. & Sinton, J.M. 2004. The C-He-Ar systematics of lavas from the Manus back-arc basin: resolving degassing and contamination. Geochimica et Cosmochimica Acta, 68, 18371856.CrossRefGoogle Scholar
Smellie, J.L. 2001. Lithostratigraphy and volcanic evolution of Deception Island, South Shetland Islands. Antarctic Science, 13, 188209.CrossRefGoogle Scholar
Smellie, J.L. & López-Martínez, J. 2000. Geological map of Deception Island. BAS GEOMAP Series, Sheet 6A, 1:25000. Cambridge: British Antarctic Survey.Google Scholar
Somoza, L., Martinez-Frias, J., Smellie, J.L., Rey, J. & Maestro, A. 2004. Evidence for hydrothermal venting and sediment volcanism discharged after recent short-lived volcanic eruptions at Deception Island, Bransfield Strait, Antarctica. Marine Geology, 203, 119140.CrossRefGoogle Scholar
Taran, Y.A. 1986. Gas geothermometers for hydrothermal systems. Geochemistry International, 23, 111126.Google Scholar
Taylor, B.E. 1986. Magmatic volatiles: isotopic variation of C, H, and S. Reviews in Mineralogy, 16, 185225.Google Scholar
Torgersen, T. & Jenkins, W.J. 1982. Helium isotopes in geothermal systems: Iceland, the Geysers, Raft River and Steamboat Springs. Geochimica et Cosmochimica Acta, 46, 739748.CrossRefGoogle Scholar
Valentin, A., Martini, M. & Diez-Gil, J.L. 1989. Geoquimica de fluidos en Isla Decepcion. Final Proceedings III Symposio Espanol Estudios Antarticos, Gredos, 195202.[Not seen].Google Scholar
van Soest, M.C., Hilton, D.R. & Kreulen, R. 1998. Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. Geochimica et Cosmochimica Acta, 62, 33233335.CrossRefGoogle Scholar