Skip to main content Accessibility help

Record of Holocene glacial oscillations in Bransfield Basin as revealed by siliceous microfossil assemblages

  • M. Angeles Bárcena (a1), Rainer Gersonde (a2), Santiago Ledesma (a1), Joan Fabrés (a3), Antonio M. Calafat (a3), Miquel Canals (a3), F. Javier Sierro (a1) and Jose A. Flores (a3)...

Two gravity cores, Gebra-1 and Gebra-2 from the central and eastern basins of Bransfield Strait, West Antarctica, consist mainly of hemipelagic, laminated muds with black layers rich in sand-sized volcanic ash. Micropalaeontological (diatoms and radiolarians) and geochemical (organic and inorganic) analyses, together with radiometric dating (U/Th, 14C and 210Pb) have been performed on both cores. AMS analyses on Total Organic Carbon yielded a 14C-age older than expected, 2810 yr BP for the core top of Gebra-1 and 2596 yr BP for Gebra-2. The downcore pattern of ages indicates a sedimentation rate of 130 cm kyr1 for Gebra-1 and 160 cm kyr1 for Gebra-2 210Pb anomalies suggest the core top of Gebra-1 is present-day sediment. The diatom and radiolarian assemblages are related to the sequence of neoglacial events over the last three millennia. The recent significant reduction in Chaetoceros resting spores is interpreted as a reduction in palaeoproductivity. The progressive increase in sea-ice taxa for the last three millennia may indicate a cooling trend. Greater sea-ice coverage during the coldest neoglacial events in the Bransfield Basin, as well as in the Weddell Sea and Bellingshausen Sea, is documented by increases in sea-ice taxa and reductions in Thalassiosira antarctica/ T. scotia resting spores, Fragilariopsis kerguelensis, the Lithomelissa group and the “circumpolar” group of radiolarians. For these periods, we postulate a restricted communication between the Weddell Sea, Bellingshausen Sea and Bransfield basin. The millenial-scale changes are overprinted by a high frequency cyclicity at about 200–300 yrs, which might be related to the 200–yrs solar cycle.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed