Skip to main content

Recovery of Antarctic stream epilithon from simulated scouring events

  • Tyler J. Kohler (a1), Ethan Chatfield (a1), Michael N. Gooseff (a2), John E. Barrett (a3) and Diane M. McKnight (a1)...

Microbial mats are common in polar streams and often dominate benthic biomass. Climate change may be enhancing the variability of stream flows in the Antarctic, but so far studies investigating mat responses to disturbance have been limited in this region. Mat regrowth was evaluated following disturbance by experimentally scouring rocks from an ephemeral McMurdo Dry Valley stream over two summers (2001–02 and 2012–13). Mats were sampled at the beginning and resampled at the end of the flow season. In 2012–13, mats were additionally resampled mid-season along with previously undisturbed controls. In 2001–02 rocks regained 47% of chlorophyll a and 40% of ash-free dry mass by the end of the summer, while in 2012–13 rocks regrew 18% and 27%, respectively. Mat stoichiometry differed between summers, and reflected differences in biomass and discharge. Oscillatoria spp. were greatest on scoured rocks and Phormidium spp. on undisturbed rocks. Small diatoms Humidophila and Fistulifera spp. increased throughout the summer in all mats, with the latter more abundant in scoured communities. Collectively, these data suggest that mats are variable intra-annually, responsive to hydrology and require multiple summers to regrow initial biomass once lost. These results will aid the interpretation of long-term data, as well as inform Antarctic Specially Managed Area protocols.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Recovery of Antarctic stream epilithon from simulated scouring events
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Recovery of Antarctic stream epilithon from simulated scouring events
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Recovery of Antarctic stream epilithon from simulated scouring events
      Available formats
Corresponding author
Hide All
Alger, A.S., McKnight, D.M., Spaulding, S.A., Tate, C.M., Shupe, G.H., Welch, K.A., Edwards, R., Andrews, E.D. & House, H.R. 1997. Ecological processes in a cold desert ecosystem: the abundance and species distribution of algal mats in glacial meltwater streams in Taylor Valley, Antarctica. Occasional Paper No. 51. Boulder, CO: Institute of Arctic and Alpine Research, 118 pp.
Biggs, B.J.F., Goring, D.G. & Nikora, V.I. 1998. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. Journal of Phycology, 34, 598607.
Bonilla, S., Rautio, M. & Vincent, W.F. 2009. Phytoplankton and phytobenthos pigment strategies: implications for algal survival in the changing Arctic. Polar Biology, 32, 12931303.
Cullis, J.D.S., Stanish, L.F. & McKnight, D.M. 2014. Diel flow pulses drive particulate organic matter transport from microbial mats in a glacial meltwater stream in the McMurdo Dry Valleys. Water Resources Research, 50, 10.1002/2013WR014061.
Davey, M.C. 1993. Carbon and nitrogen dynamics in a Maritime Antarctic stream. Freshwater Biology, 30, 319330.
Davie, A.W., Mitrovic, S.M. & Lim, R.P. 2012. Succession and accrual of benthic algae on cobbles of an upland river following scouring. Inland Waters, 2, 89100.
Doran, P.T., McKay, C.P., Fountain, A.G., Nylen, T., McKnight, D.M., Jaros, C. & Barrett, J.E. 2008. Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. Antarctic Science, 20, 10.1017/S0954102008001272.
Doran, P.T., Priscu, J.C., Lyons, W.B., Walsh, J.E., Fountain, A.G., McKnight, D.M., Moorhead, D.L. Virginia, R.A., Wall, D.H., Clow, G.D., Fritsen, C.H., McKay, C.P. & Parsons, A.N. 2002. Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517520.
Esposito, R.M.M., Spaulding, S.A., McKnight, D.M., de Vijver, B.V., Kopalová, K., Lubinski, D., Hall, B. & Whittaker, T. 2008. Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica. Botany-Botanique, 86, 13781392.
Fisher, S.G., Gray, L.J., Grimm, N.B. & Busch, D.E. 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecological Monographs, 52, 93110.
Gooseff, M.N., McKnight, D.M., Runkel, R.L. & Duff, J.H. 2004. Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnology and Oceanography, 49, 18841895.
Gooseff, M.N., McKnight, D.M., Doran, P., Fountain, A.G. & Lyons, W.B. 2011. Hydrological connectivity of the landscape of the McMurdo Dry Valleys, Antarctica. Geography Compass, 5, 666681.
Hawes, I. & Howard-Williams, C. 1998. Primary production processes in streams of the McMurdo Dry Valleys, Antarctica. Antarctic Research Series, 72, 129140.
Hillebrand, H., Dürselen, C., Kirschtel, D., Pollingher, U. & Zohary, T. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403424.
Howard-Williams, C., Vincent, C.L., Broady, P.A. & Vincent, W.F. 1986. Antarctic stream ecosystems: variability in environmental properties and algal community structure. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 71, 511544.
Komárek, J. & Anagnostidis, K. 2005. Cyanoprokaryota. 2. Teil: oscillatoriales. In Buedel, B., Krienitz, L., Gaertner, G. & Schagerl, M., eds. Süβwasserflora von mitteleuropa, Band 19/2 Heidelberg: Elsevier/Spektrum, 759 pp.
Konfirst, M.A., Sjunneskog, C., Scherer, R.P. & Doran, P.T. 2011. A diatom record of environmental change in Fryxell Basin, Taylor Valley, Antarctica, late Pleistocene to present. Journal of Paleolimnology, 46, 257272.
Kopalová, K., Veselá, J., Elster, J., Nedbalová, L., Komárek, J. & van de Vijver, B. 2012. Benthic diatoms (Bacillariophyta) from seepages and streams on James Ross Island (NW Weddell Sea, Antarctica). Plant Ecology and Evolution, 145, 190208.
McKnight, D.M., Niyogi, D.K., Alger, A.S., Bomblies, A., Conovitz, P.A. & Tate, C.M. 1999. Dry valley streams in Antarctica: ecosystems waiting for water. Bioscience, 49, 985995.
Murphy, J. & Riley, J.P. 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta, 26, 3136.
Nielsen, U.N., Wall, D.H., Adams, B.J., Virginia, R.A., Ball, B.A., Gooseff, M.N. & McKnight, D.M. 2012. The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. Ecosphere, 3, 10.1890/ES11-00325.1.
O’Neill, T.A., Balks, M.R. & López-Martínez, J. 2013. Visual recovery of desert pavement surfaces following impacts from vehicle and foot traffic in the Ross Sea region of Antarctica. Antarctic Science, 25, 514530.
Pizarro, H. & Vincour, A. 2000. Epilithic biomass in an outflow stream at Potter Peninsula, King George Island, Antarctica. Polar Biology, 23, 851857.
R Core Team. 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at:
Richard, Y., Rouault, M., Pohl, B., Crétat, J., Duclot, I., Taboulot, S., Reason, C.J.C., Macron, C. & Buiron, D. 2013. Temperature changes in the mid- and high-latitudes of the Southern Hemisphere. International Journal of Climatology, 33, 19481963.
Smeller, J.M. 1995. Comparison of sample preparation methods for the spectrophotometric determination of phosphorus in soil and coal fly ash. Analyst, 120, 207210.
Stanish, L.F., Nemergut, D.R. & McKnight, D.M. 2011. Hydrologic processes influence diatom community composition in Dry Valley streams. Journal of the North American Benthological Society, 30, 10571073.
Stanish, L.F., Kohler, T.J., Esposito, R.M.M., Simmons, B.L., Nielsen, U.N., Wall, D.H., Nemergut, D.R. & McKnight, D.M. 2012. Extreme streams: flow intermittency as a control on diatom communities in meltwater streams in the McMurdo Dry Valleys, Antarctica. Canadian Journal of Fisheries and Aquatic Sciences, 69, 14051419.
Steinman, A., Lamberti, G.A. & Leavitt, P.R. 1996. Biomass and pigments of benthic algae. In Hauer, F.R. & Lamberti, G.A., eds. Methods in stream ecology, 2nd ed. San Diego, CA: Academic Press, 357379.
Strickland, J.D.H. & Parsons, T.R. 1972. A practical handbook of seawater analysis, 2nd ed. Ottawa, ON: Fisheries Research Board of Canada Bulletin, 167 pp.
Strunecký, O., Komárek, J., Johansen, J., Lukešová, A. & Elster, J. 2013. Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, cyanobacteria). Journal of Phycology, 49, 11671180.
Treonis, A.M., Wall, D.H. & Virginia, R.A. 1999. Invertebrate biodiversity in Antarctic dry valley soils and sediments. Ecosystems, 2, 482492.
Vincent, W.F. & Howard-Williams, C. 1986. Antarctic stream ecosystems: physiological ecology of a blue-green algal epilithon. Freshwater Biology, 16, 219233.
Vyverman, W., Verleyen, E., Wilmotte, A., Hodgson, D., Willems, A., Peeters, K., van de Vijver, B., de Wever, A., Leliaert, F. & Sabbe, K. 2010. Evidence for widespread endemism among Antarctic micro-organisms. Polar Science, 4, 103113.
Walsh, J.E. 2009. A comparison of Arctic and Antarctic climate change, present and future. Antarctic Science, 21, 179188.
Welch, K.A., Lyons, W.B., Whisner, C., Gardner, C.B., Gooseff, M.N., McKnight, D.M. & Priscu, J.C. 2010. Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. Antarctic Science, 22, 662672.
Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39, 19851992.
Wyatt, K.H., Rober, A.R., Schmidt, N. & Davison, I.R. 2014. Effects on desiccation and rewetting on the release and decomposition of dissolved organic carbon from benthic macroalgae. Freshwater Biology, 59, 407416.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 1
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 169 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.