Skip to main content
×
Home
    • Aa
    • Aa

Risks posed to the Antarctic marine environment by acoustic instruments: a structured analysis

Abstract

The risks posed by a range of acoustic scientific instruments were assessed by the construction of matrices of scale and likelihood. We recognized six levels of impact ranging from none or short term, minimal behavioural response (Level 1) to multiple injuries and fatalities and/or compromised populations (Level 6) and six levels of likelihood ranging from “Expected in almost all instances” (Level 1) to “cannot see how it could happen” (Level 6). Typical scientific instruments ranging from acoustic releases to large air gun arrays were assessed. To provide a perspective for the risks of scientific operations, other activities were also ranked. These included large chemical explosions, submarine detection sonars implicated in some mass strandings of cetaceans and normal Antarctic shipping activities. The conclusion reached was that most scientific instruments pose a similar or lower risk than normal shipping operations. High source-level equipment poses some risk to individual animals' hearing and so should be mitigated. Likewise, survey planning should be designed to avoid trapping animals in narrow, constricted sea ways. Long term, cumulative impacts are still difficult to detect in areas with greater anthropogenic noise than the Antarctic but we concluded that any possible long term impacts should be mitigated by maintaining the low levels of activity using high source-level equipment through data sharing and survey planning.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Risks posed to the Antarctic marine environment by acoustic instruments: a structured analysis
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Risks posed to the Antarctic marine environment by acoustic instruments: a structured analysis
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Risks posed to the Antarctic marine environment by acoustic instruments: a structured analysis
      Available formats
      ×
Copyright
Corresponding author
Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia, phil.obrien@ga.gov.au
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 32 *
Loading metrics...

Abstract views

Total abstract views: 86 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.