Skip to main content Accessibility help
×
×
Home

Sedimentology of lower Pliocene to Upper Pleistocene diamictons from IODP Site U1358, Wilkes Land margin, and implications for East Antarctic Ice Sheet dynamics

  • Nadine Orejola (a1), Sandra Passchier (a1) and IODP Expedition 318 SCIENTISTS

Abstract

During the early Pliocene a dynamic marine-based ice sheet retreated from the Wilkes Land margin with periodic ice advances beyond Last Glacial Maximum position. A change in sand provenance is indicative of a more stable Mertz Glacier system during the Late Pleistocene. East Antarctic Ice Sheet (EAIS) dynamics were evaluated through the analysis of marine diamictons from Integrated Ocean Drilling Program (IODP) site U1358 on the Adélie Land continental shelf. The warmer than present conditions of the early Pliocene coupled with the site's proximity to the landward sloping Wilkes Subglacial Basin provided the rationale for the investigations at this site. Based on visual core descriptions, particle size distributions, and major and trace element ratios, we interpret the origin of lower Pliocene strata by intermittent glaciomarine sedimentation with open-marine conditions and extensive glacial advances to the outer shelf. Heavy mineral analyses show that sand-sized detritus in the lower Pliocene strata was sourced from local intermediate to high-grade metamorphic rocks near Mertz Glacier. In contrast, Pleistocene diamictons exhibit a larger contribution from a prehnite-pumpellyite greenschist facies suggesting supply via iceberg rafting from northern Victoria Land. From this sedimentological evidence, we postulate a shift from a dynamic EAIS margin in the early Pliocene to possible stabilization in the Pleistocene.

Copyright

Corresponding author

*Corresponding author: passchiers@mail.montclair.edu

Footnotes

Hide All

For a full list of authors see http://publications.iodp.org/proceedings/318/staff.htm

Footnotes

References

Hide All
Beaman, R.J. Harris, P.T. 2003. Seafloor morphology and acoustic facies of the George V Land shelf. Deep-Sea Research II, 50, 13431355.
Beaman, R.J., O'Brien, P.E., Post, A.L. De Santis, L. 2011. A new high-resolution bathymetry model for the Terre Adélie and George V continental margin, East Antarctica. Antarctic Science, 23, 95103.
Benn, D.I. Gemmell, A.M.D. 2002. Fractal dimensions of diamictic particle-size distributions: simulations and evaluation. Geological Society of America Bulletin, 114, 528532.
Deer, W.A., Howie, R.A. Zussman, J. 1992. An introduction to the rock forming minerals, 2nd ed. London: Longman, 696 pp.
Domack, E.W. 1982. Sedimentology of glacial and glacial marine deposits on the George V-Adélie continental shelf, East Antarctica. Boreas, 11, 7997.
Escutia, C., Bárcena, M.A., Lucchi, R.G., Romero, O., Ballegeer, A.M., Gonzalez, J.J. Harwood, D.M. 2009. Circum-Antarctic warming events between 4 and 3.5 Ma recorded in marine sediments from the Prydz Bay (ODP Leg 188) and the Antarctic Peninsula (ODP Leg 178) margins. Global and Planetary Change, 69, 170184.
Escutia, C., De Santis, L., Donda, F., Dunbar, R.B., Cooper, A.K., Brancolini, G. Eittreim, S.L. 2005. Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments. Global and Planetary Change, 45, 5181.
Escutia, C., Brinkhuis, H., Klaus, A. & The Expedition 318 Scientists 2011. Proceedings of the Integrated Ocean Drilling Program, 318, 10.2204/iodp.proc.318.101.2011.
Expedition 318 Scientists 2011. Site U1358. In Escutia, C., Brinkhuis, H., Klaus, A. & The Expedition 318 Scientists. Integrated Ocean Drilling Program Proceedings, 318, 10.2204/iodp.proc.318.106.2011.
Fretwell, P., Pritchard, H.D., Vaughan, D.G., et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 375393.
Gair, H.S., Sturm, A., Carryer, S.J. Grindley, G.W. 1969. The geology of northern Victoria Land. Geologic map of Antarctica, sheet 13, plate XII. Antarctic Map Folio Series, 12.
Goodge, J.W. Fanning, C.M. 2010. Composition and age of the East Antarctic Shield in eastern Wilkes Land determined by proxy from Oligocene–Pleistocene glaciomarine sediment and Beacon Supergroup sandstones, Antarctica. Geological Society of America Bulletin, 122, 11351159.
Hooke, R.LeB. Iverson, N.R. 1995. Grain size distribution in deforming subglacial tills: role of grain fracture. Geology, 23, 5760.
Konert, M. Vandenberghe, J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology, 44, 523535.
Licht, K.J., Dunbar, N.W., Andrews, J.T. Jennings, A.E. 1999. Distinguishing subglacial till and glacial marine diamicts in the western Ross Sea, Antarctica: implications for a last glacial maximum grounding line. Geological Society of America Bulletin, 111, 91103.
Mayewski, P.A., Attig, J.W. Drewry, D.J. 1979. Pattern of ice surface lowering for the Rennick Glacier, northern Victoria Land, Antarctica. Journal of Glaciology, 22, 5365.
McLennan, S.M., Hemming, S., McDaniel, D.K. Hanson, G.N. 1993. Geochemical approaches to sedimentation, provenance and tectonics. Geological Society of America Special Paper, 284, 2140.
Murray, R.W., Miller, D.J. Kryc, K.A. 2000. Analysis of major and trace elements in rocks, sediments, and interstitial waters by inductively coupled plasma-atomic emission spectrometry (ICP-AES). ODP Technical Note, 29. Available at http://www-odp.tamu.edu/publications/tnotes/tn29/INDEX.HTM, accessed September 2012.
Naish, T., Powell, R., Levy, R., et al. 2009. Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations. Nature, 458, 322328.
Nesbitt, H.W. Young, G.M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 199, 715717.
Nesbitt, H.W. Young, G.M. 1996. Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology, 42, 341358.
O'Brien, P.E., Goodwin, I., Forsberg, C.-F., Cooper, A.K. Whitehead, J. 2007. Late Neogene ice drainage changes in Prydz Bay, East Antarctica and the interaction of Antarctic ice sheet evolution and climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 390410.
Oliver, R.L. Fanning, C.M. 2002. Proterozoic geology east and south-east of Commonwealth Bay, George V Land, Antarctica, and its relationship to that of adjacent Gondwana terranes. Royal Society of New Zealand Bulletin, No. 35, 5158.
Passchier, S., O'Brien, P.E., Damuth, J.E., Januszczack, N., Handwerger, D.A. Whitehead, J.M. 2003. Pliocene–Pleistocene glaciomarine sedimentation in eastern Prydz Bay and development of the Prydz trough-mouth fan, ODP sites 1166 and 1167, East Antarctica. Marine Geology, 199, 179305.
Principato, S.M., Jennings, A.E., Kristjansdottir, G.B. Andrews, J.T. 2005. Glacial-marine or subglacial origin of diamicton units from the southwest and north Iceland shelf: implications for the glacial history of Iceland. Journal of Sedimentary Research, 75, 968983.
Pritchard, H.D., Arthern, R.J., Vaughan, D.G. Edwards, L.A. 2009. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461, 971975.
Reed, S.J.B. 2005. Electron microprobe analysis and scanning electron microscopy in geology. 2nd edition. New York: Cambridge University Press, 162178.
Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., et al. 2009. Global multi-resolution topography synthesis. Geochemistry Geophysics Geosystems, 10.1029/2008GC002332.
Schenau, S.J., Prins, M.A., Delange, G.J. Monnin, C. 2001. Barium accumulation in the Arabian Sea: controls on barite preservation in marine sediments. Geochimica et Cosmochimica Acta, 65, 15451556.
Sperazza, M., Moore, J.N. Hendrix, M.S. 2004. High-resolution analysis of naturally occurring very fine-grained sediment through laser defractometry. Journal of Sedimentary Research, 74, 736743.
Stuart, K.M. Long, D.G. 2011. Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer. Deep-Sea Research II, 58, 12851300.
Van der Wateren, F.M., Dunai, T.J., van Balen, R.T., Klas, W., Verbers, A.L.L.M., Passchier, S. Herpers, U. 1999. Contrasting Neogene denudation histories of different structural regions in the Transantarctic Mountains rift flank constrained by cosmogenic isotope measurements. Global and Planetary Change, 23, 145172.
Whitehead, J.M. Bohaty, S.M. 2003. Pliocene summer sea surface temperature reconstruction using silicoflagellates from Southern Ocean ODP site 1165. Paleoceanography, 10.1029/2002PA000829.
Wodzicki, A. Robert, R. 1986. Geology of the Bowers Supergroup, central Bowers Mountains, northern Victoria Land. Antarctic Research Series, 46, 3968.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Orejola Supplementary Material
Supplementary Material

 PDF (310 KB)
310 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed