Skip to main content Accessibility help
×
×
Home

The structural and dynamic responses of Stange Ice Shelf to recent environmental change

  • T.O. Holt (a1), N.F. Glasser (a1), H.A. Fricker (a2), L. Padman (a3), A. Luckman (a4), O. King (a5), D.J. Quincey (a6) and M.R. Siegfried (a2)...
Abstract

Stange Ice Shelf is the most south-westerly ice shelf on the Antarctic Peninsula, a region where positive trends in atmospheric and oceanic temperatures have been recently documented. In this paper, we use a range of remotely sensed datasets to evaluate the structural and dynamic responses of Stange Ice Shelf to these environmental changes. Ice shelf extent and surface structures were examined at regular intervals from optical and radar satellite imagery between 1973 and 2011. Surface speeds were estimated in 1989, 2004 and 2010 by tracking surface features in successive satellite images. Surface elevation change was estimated using radar altimetry data acquired between 1992 and 2008 by the European Remote Sensing Satellite (ERS) -1, -2 and Envisat. The mean number of surface melt days was estimated using the intensity of backscatter from Envisat’s Advanced Synthetic Aperture Radar instrument between 2006 and 2012. These results show significant shear fracturing in the southern portion of the ice shelf linked to enhanced flow speed as a consequence of measured thinning. However, we conclude that, despite the observed changes, Stange Ice Shelf is currently stable.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The structural and dynamic responses of Stange Ice Shelf to recent environmental change
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The structural and dynamic responses of Stange Ice Shelf to recent environmental change
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The structural and dynamic responses of Stange Ice Shelf to recent environmental change
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
toh08@aber.ac.uk
References
Hide All
Barrand, N.E., Vaughan, D.G., Steiner, N., Tedesco, M., Munneke, P.K., van den Broeke, M.R. & Hosking, J.S. 2013. Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. Journal of Geophysical Research - Earth Surface, 118, 315330.
Braun, M., Humbert, A. & Moll, A. 2009. Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. Cryosphere, 3, 4156.
Cook, A.J. & Vaughan, D.G. 2010. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere, 4, 7798.
Cooper, A.P.R. 1997. Historical observations of Prince Gustav Ice Shelf. Polar Record, 33, 285294.
Dinniman, M.S., Klinck, J.M. & Hofmann, E.E. 2012. Sensitivity of Circumpolar Deep Water transport and ice shelf basal melt along the west Antarctic Peninsula to changes in the winds. Journal of Climate, 25, 47994816.
Doake, C.S.M. & Vaughan, D.G. 1991. Rapid disintegration of the Wordie Ice Shelf in response to atmospheric warming. Nature, 350, 328330.
Doake, C.S.M., Corr, H.F.J., Rott, H., Skvarca, P. & Young, N.W. 1998. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature, 391, 778780.
Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P.R., Ha, H.K., Lee, S.H., Steig, E.J., Ding, Q.H., Abrahamsen, E.P. & Schröder, M. 2014. Strong sensitivity of Pine Island Ice-Shelf melting to climatic variability. Science, 343, 174178.
Fahnestock, M.A., Abdalati, W. & Shuman, C.A. 2002. Long melt seasons on ice shelves of the Antarctic Peninsula: an analysis using satellite-based microwave emission measurements. Annals of Glaciology, 34, 127133.
Fahnestock, M.A., Scambos, T.A., Bindschadler, R.A. & Kvaran, G. 2000. A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica. Journal of Glaciology, 46, 652664.
Fox, A.J. & Vaughan, D.G. 2005. The retreat of Jones Ice Shelf, Antarctic Peninsula. Journal of Glaciology, 51, 555560.
Fricker, H.A. & Padman, L. 2012. Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry. Journal of Geophysical Research - Oceans, 117, 10.1029/2011JC007126.
Fyke, J.G., Carter, L., Mackintosh, A., Weaver, A.J. & Meissner, K.J. 2010. Surface melting over ice shelves and ice sheets as assessed from modeled surface air temperatures. Journal of Climate, 23, 19291936.
Glasser, N.F. & Scambos, T.A. 2008. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. Journal of Glaciology, 54, 316.
Glasser, N.F., Scambos, T.A., Bohlander, J., Truffer, M., Pettit, E. & Davies, B.J. 2011. From ice-shelf tributary to tidewater glacier: continued rapid recession, acceleration and thinning of Rohss Glacier following the 1995 collapse of the Prince Gustav Ice Shelf, Antarctic Peninsula. Journal of Glaciology, 57, 397406.
Glasser, N.F., Kulessa, B., Luckman, A., Jansen, D., King, E.C., Sammonds, P.R., Scambos, T.A. & Jezek, K.C. 2009. Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula. Journal of Glaciology, 55, 400410.
Griggs, J.A. & Bamber, J.L. 2011. Antarctic ice-shelf thickness from satellite radar altimetry. Journal of Glaciology, 57, 485498.
Hambrey, M.J. & Dowdeswell, J.A. 1994. Flow regime of the Lambert Glacier-Amery Ice Shelf system, Antarctica: structural evidence from Landsat imagery. Annals of Glaciology, 20, 401406.
Holland, P.R., Jenkins, A. & Holland, D.M. 2010. Ice and ocean processes in the Bellingshausen Sea, Antarctica. Journal of Geophysical Research - Oceans, 115, 10.1029/2008JC005219.
Holland, P.R., Corr, H.F.J., Pritchard, H.D., Vaughan, D.G., Arthern, R.J., Jenkins, A. & Tedesco, M. 2011. The air content of Larsen Ice Shelf. Geophysical Research Letters, 38, 10.1029/2011GL047245.
Holt, T.O., Glasser, N.F., Quincey, D.J. & Siegfried, M.R. 2013. Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula. Cryosphere, 7, 797816.
Hughes, T. 1983. On the disintegration of ice shelves: the role of fracture. Journal of Glaciology, 29, 98117.
King, J.C. 1994. Recent climate variability in the vicinity of the Antarctic Peninsula. International Journal of Climatology, 14, 357369.
Lucchitta, B.K. & Rosanova, C.E. 1998. Retreat of northern margins of George VI and Wilkins ice shelves, Antarctic Peninsula. Annals of Glaciology, 27, 4146.
Luckman, A., Elvidge, A., Jansen, D., Kulessa, B., Munneke, P.K., King, J. & Barrand, N.E. 2014. Surface melt and ponding on Larsen C Ice Shelf and the impact of foehn winds. Antarctic Science, 26, 10.1017/S0954102014000339.
MacAyeal, D.R., Scambos, T.A., Hulbe, C.L. & Fahnestock, M.A. 2003. Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. Journal of Glaciology, 49, 2236.
Martinson, D.G., Stammerjohn, S.E., Iannuzzi, R.A., Smith, R.C. & Vernet, W. 2008. Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep-Sea Research II - Topical Studies in Oceanography, 55, 19641987.
Mercer, J.H. 1978. West Antarctic Ice Sheet and CO2 greenhouse effect: a threat of disaster. Nature, 271, 321325.
Meredith, M.P. & King, J.C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32, 10.1029/2005GL024042.
Morris, E.M. & Vaughan, D.G. 2003. Spatial and temporal variation of surface temperature on the Antarctic Peninsula and the limit of viability of ice shelves. Antarctic Research Series, 79, 6168.
Nagler, T. & Rott, H. 2000. Retrieval of wet snow by means of multitemporal SAR data. IEEE Transactions on Geoscience and Remote Sensing, 38, 754765.
Padman, L., Costa, D.P., Dinniman, M.S., Fricker, H.A., Goebel, M.E., Huckstadt, L.A., Humbert, A., Joughin, I., Lenaerts, J.T.M., Ligtenberg, S.R.M., Scambos, T. & van den Broeke, M.R. 2012. Oceanic controls on the mass balance of Wilkins Ice Shelf, Antarctica. Journal of Geophysical Research - Oceans, 117, 10.1029/2011JC007301.
Pritchard, H.D., Ligtenberg, S.R.M., Fricker, H.A., Vaughan, D.G., van den Broeke, M.R. & Padman, L. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505.
Rack, W. & Rott, H. 2004. Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula. Annals of Glaciology, 39, 505510.
Rack, W., Doake, C.S.M., Rott, H., Siegel, A. & Skvarca, P. 2000. Interferometric analysis of the deformation pattern of the northern Larsen Ice Shelf, Antarctic Peninsula, compared to field measurements and numerical modeling. Annals of Glaciology, 31, 205210.
Reynolds, J.M. 1988. The structure of Wordie Ice Shelf, Antarctic Peninsula. British Antarctic Survey Bulletin, No. 80, 5764.
Rignot, E., Mouginot, J. & Scheuchl, B. 2011. MEaSUREs InSAR-based Antarctica ice velocity map. Boulder, CO: National Snow and Ice Data Center. Available at: http://dx.doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0484.001.
Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. 2013. Ice-shelf melting around Antarctica. Science, 341, 266270.
Robertson, R., Visbeck, M., Gordon, A.L. & Fahrbach, E. 2002. Long-term temperature trends in the deep waters of the Weddell Sea. Deep-Sea Research II - Topical Studies in Oceanography, 49, 47914806.
Rott, H., Skvarca, P. & Nagler, T. 1996. Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science, 271, 788792.
Scambos, T., Hulbe, C. & Fahnestock, M. 2003. Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarctic Research Series, 79, 7992.
Scambos, T.A., Bohlander, J.A., Shuman, C.A. & Skvarca, P. 2004. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters, 31, 10.1029/2004GL020670.
Scambos, T.A., Hulbe, C., Fahnestock, M. & Bohlander, J. 2000. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 46, 516530.
Scambos, T.A., Haran, T.M., Fahnestock, M.A., Painter, T.H. & Bohlander, J. 2007. MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sensing of Environment, 111, 242257.
Scambos, T., Fricker, H.A., Liu, C.C., Bohlander, J., Fastook, J., Sargent, A., Massom, R. & Wu, A.M. 2009. Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins Ice Shelf break-ups. Earth and Planetary Science Letters, 280, 5160.
Shepherd, A., Wingham, D. & Rignot, E. 2004. Warm ocean is eroding West Antarctic Ice Sheet. Geophysical Research Letters, 31, 10.1029/2004GL021106.
Shepherd, A., Wingham, D., Payne, T. & Skvarca, P. 2003. Larsen Ice Shelf has progressively thinned. Science, 302, 856859. Correction: Science, 303, 1612–1612.
Stammerjohn, S.E., Martinson, D.G., Smith, R.C., Yuan, X. & Rind, D. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research - Oceans, 113, 10.1029/2007JC004269.
Tedesco, M. 2009. Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness temperature (1979–2008). Remote Sensing of Environment, 113, 979997.
Tedesco, M. & Monaghan, A.J. 2009. An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate variability. Geophysical Research Letters, 36, 10.1029/2009GL039186.
Thomas, R., Davis, C., Frederick, E., Krabill, W., Li, Y.H., Manizade, S. & Martin, C. 2008. A comparison of Greenland ice-sheet volume changes derived from altimetry measurements. Journal of Glaciology, 54, 203212.
Trusel, L.D., Frey, K.E. & Das, S.B. 2012. Antarctic surface melting dynamics: enhanced perspectives from radar scatterometer data. Journal of Geophysical Research - Earth Surface, 117, 10.1029/2011JF002126.
Vieli, A., Payne, A.J., Shepherd, A. & Du, Z. 2007. Causes of pre-collapse changes of the Larsen B Ice Shelf: numerical modelling and assimilation of satellite observations. Earth and Planetary Science Letters, 259, 297306.
Watson, D.F. 1992. Contouring: a guide to the analysis and display of spatial data. Oxford: Pergamon, 340 pp.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Antarctic Science
  • ISSN: 0954-1020
  • EISSN: 1365-2079
  • URL: /core/journals/antarctic-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed