Skip to main content Accessibility help

Suspected meteorite fragments in marine sediments from East Antarctica

  • Naresh C. Pant (a1), Francisco J. Jimenez-Espejo (a2), Cary P. Cook (a3) (a4), Paromita Biswas (a1), Robert Mckay (a5), Claudio Marchesi (a6) (a7), Motoo Ito (a8), Dewashish Upadhyay (a9), Junichiro Kuroda (a2), Kenji Shimizu (a8), Ryoko Senda (a10), Tina Van De Flierdt (a11), Yoshinori Takano (a2), Katsuhiko Suzuki (a2), Carlota Escutia (a7) and Prakash K. Shrivastava (a12)...


Unusual mafic rock fragments deposited in Plio-Pleistocene-aged marine sediments were recorded at Integrated Ocean Drilling Program (IODP) Site U1359, in Wilkes Land, East Antarctica. These fragments were identified from sediment layers deposited between c. 3 and 1.2 Ma, indicating a sustained supply during this time interval. Clinopyroxenes in these basalts are Al–Ti diopside–hedenbergite, uncommon in terrestrial magmatic rocks. A single strong peak in the Raman spectra of a phosphate-bearing mineral at 963 cm-1 supports the presence of merrillite. Although not conclusive, petrological traits and oxygen isotopic compositions also suggest that the fragments may be extra-terrestrial fragments affected by shock metamorphism. Nevertheless, it is concluded that the basaltic fragments incorporated in marine sediments at Site U1359 represent ice-rafted material supplied to the continental rise of East Antarctica, probably from the bedrocks near the proximal Ninnis Glacier. Further studies on Plio-Pleistocene sediments near Site U1359 are required to characterize the unusual mafic rocks described.


Corresponding author


Hide All
Anand, M., Taylor, L.A., Floss, C., Neal, C.R., Terada, K. & Tanikawa, S. 2006. Petrology and geochemistry of LaPaz Icefield 02205: a new unique low-Ti mare-basalt meteorite. Geochimica et Cosmochimica Acta, 70, 10.1016/j.gca.2005.08.018.
Clayton, R.N. 2003. Oxygen isotopes in meteorites. In Holland, H.D. & Turekian, K.K., eds. Treatise on geochemistry, Vol. 1. Amsterdam: Elsevier, 129142.
Cook, C.P., van De Flierdt, T., Williams, T. et al. 2013. Dynamic behavior of the East Antarctic ice sheet during Pliocene warmth. Nature Geoscience, 6, 10.1038/ngeo1889.
Day, J.M., Taylor, L.A., Floss, C., Patchen, A.D., Schnare, D.W. & Pearson, D.G. 2006. Comparative petrology, geochemistry, and petrogenesis of evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica. Geochimica et Cosmochimica Acta, 70, 10.1016/j.gca.2005.11.015.
Elliot, D.H., Fleming, T.H., Haban, M.A. & Siders, M.A. 1995. Petrology and mineralogy of the Kirkpatrick Basalt and Ferrar Dolerite, Mesa Range Region, North Victoria Land, Antarctica. Antarctic Research Series, 67, 103141.
Escutia, C., Brinkhuis, H., Klaus, A. & Expedition 318 Scientists. 2011. Wilkes Land glacial history: Expedition 318 of the riserless drilling platform Wellington, New Zealand, to Hobart, Australia Sites U1355–U1361, 3 January–8 March 2010. Proceedings of the Integrated Ocean Drilling Program, Vol. 318. Tokyo: Integrated Ocean Drilling Program Management International, Inc.
Floss, C., Taylor, L.A., Promprated, P. & Rumble III, D. 2005. Northwest Africa 011: a "eucritic" basalt from a non-eucritic parent body. Meteoritics and Planetary Science, 40, 343360.
Floss, C., Crozaz, G., McKay, G., Mikouchi, T. & Killgore, M. 2003. Petrogenesis of angrites. Geochimica et Cosmochimica Acta, 67, 10.1016/S0016-7037(03)00310-7.
Fretwell, P., Pritchard, H., Vaughan, D. et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 10.5194/tc-7-375-2013.
Gnos, E., Hofmann, B., Franchi, I.A., Al-Kathiri, A., Hauser, M. & Mauser, L. 2002. Sayh al Uhaymir 094: a new Martian meteorite from the Oman desert. Meteoritics & Planetary Science, 37, 835854.
Goodge, J. & Fanning, C. 2010. Composition and age of the East Antarctic Shield in eastern Wilkes Land determined by proxy from Oligocene–Pleistocene glaciomarine sediment and Beacon supergroup sandstones, Antarctica. Geological Society of America Bulletin, 122, 10.1130/B30079.1.
Greenwood, R.C., Franchi, I.A., Jambon, A. & Buchanan, P.C. 2005. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature, 435, 10.1038/nature03612.
Hirokazu, T. 2005. Sadanagaite and fassaite from the contact aureole at the Kiura Kozan area, central Kyushu, Japan. Proceedings of the Institute of Natural Sciences, Nihon University, 40, 107112.
Hutchison, R. 2004. Meteorites: a petrologic, chemical and isotope synthesis. Cambridge: Cambridge University Press, 520 pp.
Ito, M. & Messenger, S. 2008. Isotopic imaging of refractory inclusions in meteorites with the NanoSIMS 50L. Applied Surface Science, 255, 10.1016/j.apsusc.2008.05.095.
Jolliff, B.L., Hughes, J.M., Reeman, F.J.J. & Zeigler, R.A. 2006. Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite. American Mineralogist, 91, 10.2138/am.2006.2185.
Keil, K. 2012. Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chemie der Erde-Geochemistry, 72, 10.1016/j.chemer.2012.06.002.
McCubben, M., Shearer, C.K., Burger, P.V., Hauri, E.H., Wang, J., Elardo, S.M. & Papike, J.J. 2014. Volatile abundances of coexisting merrillite and apatite in the Martian meteorite Shergotty: implications for merrillite in hydrous magmas. American Mineralogist, 99, 10.2138/am.2014.4782.
Meyer, C. & Hubbard, N.J. 1970. High potassium and high phosphorous glass as an important rock type in the Apollo 12 soil samples. Meteoritics, 5, 210211.
Misawa, K., Kohno, M., Tomiyama, T., Noguchi, T., Nakamura, T., Nagao, K., Mikouchi, T. & Nishizumi, K. 2010. Two extraterrestrial dust horizons found in the Dome Fuji Ice core, East Antartica. Earth and Planetary Science Letters, 289, 10.1016/j.epsl.2009.11.016.
Mittlefehldt, D.W. & Lindstrom, M.M. 1990. Geochemistry and genesis of the angrites. Geochimica et Cosmochimica Acta, 54, 10.1016/0016-7037(90)90135-8.
Moore, P.B. 1983. Cerite, Re9(Fe3+,Mg)(Si04)6(Si040H)(OH)3: Its crystal structure and relation to whitlockite. American Mineralogist, 68, 9961003.
Nardini, I., Armienti, P., Rocchi, S. & Burgess, R. 2003. 40Ar-39Ar chronology and petrology of the Miocene rift-related volcanism of Daniell Peninsula (Northern Victoria Land, Antarctica). Terra Antarctica, 10, 3962.
Ngounouno, I., Déruelle, B., Demaiffe, D. & Montigny, R. 2003. Petrology of the Cenozoic volcanism in the Upper Benue valley, northern Cameroon (Central Africa). Contributions to Mineralogy and Petrology, 145, 10.1007/s00410-002-0438-6.
Pant, N.C., Biswas, P., Shrivastava, P.K., Bhattacharya, S., Verma, K., Pandey, M. & IODP Expedition 318 Scientific Party 2013. Provenance of Pleistocene sediments from site U1359 of the Wilkes Land IODP Expedition: evidence for multiple sourcing from east Antarctic craton and Ross orogeny. Geological Society of London, Special Publications, 381, 277297.
Papike, J.J. 1998. Comparative planetary mineralogy: chemistry of melt-derived pyroxene, feldspar, and olivine. Reviews in Mineralogy and Geochemistry, 36, 7.17.11.
Patterson, M.O., McKay, R., Naish, T. et al. 2014. Orbital forcing of the East Antarctic ice sheet during the Pliocene and Early Pleistocene. Nature Geoscience, 7, 10.1038/ngeo2273.
Pearce, N.J., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. & Chenery, S.P. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards and Geoanalytical Research, 21, 10.1111/j.1751-908X.1997.tb00538.x.
Perinelli, C., Armienti, P. & Dallai, L. 2011. Thermal evolution of the lithosphere in a rift environment as inferred from the geochemistry of mantle cumulates, northern Victoria Land, Antarctica. Journal of Petrology, 52, 665690.
Seyler, M., Lorand, J.-P. & Gaston, G. 2004. Asthenospheric metasomatism beneath the mid-ocean ridge: evidence from depleted abyssal peridotites. Geology, 32, 10.1130/G20191.1.
Srinivasan, G., Huss, G.R. & Wasserburg, G.J. 2000. A petrographic, chemical and isotopic study of calcium-aluminum-rich inclusions and aluminum-rich chondrules from the Axtell (CV3) chondrite. Meteoritics and Planetary Science, 35, 10.1111/j.1945-5100.2000.tb01520.x.
Sun, S. & McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society of London, Special Publications, 42, 313345.
Tauxe, L., Stickley, C., Sugisaki, S. et al. 2012. Magneto and biostratigraphic constraints for the paleoceanographic record of the Wilkes Land Margin cores: IODP Expedition 318. Paleoceanography, 27, 2214.
Xie, X., Yang, H., Gu, X. & Downs, R.T. 2015. Chemical composition and crystal structure of merrillite from the Suizhou meteorite. American Mineralogist, 100, 27532756.
Xie, X., Zhai, S., Chen, M. & Yang, H. 2013. Tuite, γ-Ca3(PO4)2, formed by chlorapatite decomposition in a shock vein of the Suizhou L6 chondrite. Meteoritics and Planetary Science, 48, 10.1111/maps.12143.
Xie, X., Minitti, M.E., Chen, M., Mao, H.K., Wang, D., Shu, J. & Fei, Y. 2002. Natural high-pressure polymorph of merrillite in the shock vein of the Suizhou meteorite. Geochimica et Cosmoschimica Acta, 66, 10.1016/S0016-7037(02)00833-5.
Yanai, K. 1994. Angrite Asuka-881371: preliminary examination of a unique meteorite in the Japanese collection of Antarctic meteorites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 7, 3041.
Zeigler, R.A., Korotev, R.L., Jolliff, B.L. & Haskin, L.A. 2005. Petrology and geochemistry of the La Paz Ice field basaltic lunar meteorite and source-crater pairing with Northwest Africa 032. Meteoritics and Planetary Science, 40, 10.1111/j.1945-5100.2005.tb00174.x.


Suspected meteorite fragments in marine sediments from East Antarctica

  • Naresh C. Pant (a1), Francisco J. Jimenez-Espejo (a2), Cary P. Cook (a3) (a4), Paromita Biswas (a1), Robert Mckay (a5), Claudio Marchesi (a6) (a7), Motoo Ito (a8), Dewashish Upadhyay (a9), Junichiro Kuroda (a2), Kenji Shimizu (a8), Ryoko Senda (a10), Tina Van De Flierdt (a11), Yoshinori Takano (a2), Katsuhiko Suzuki (a2), Carlota Escutia (a7) and Prakash K. Shrivastava (a12)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed