Skip to main content Accessibility help
×
Home

Variations of UV irradiance at Antarctic station Concordia during the springs of 2008 and 2009

  • Vito Vitale (a1), Boyan Petkov (a1) (a2), Florence Goutail (a3), Christian Lanconelli (a1), Angelo Lupi (a1), Mauro Mazzola (a1), Maurizio Busetto (a1), Andrea Pazmino (a3), Riccardo Schioppo (a4), Laura Genoni (a5) and Claudio Tomasi (a1)...

Abstract

The features of solar UV irradiance measured at the Italian-French Antarctic Plateau station, Concordia, during the springs of 2008 and 2009 are presented and discussed. In order to study the impact of the large springtime variations in total ozone column on the fraction of ultraviolet B (UV-B) irradiance (from c. 290–315 nm) reaching the Earth surface, irradiance datasets corresponding to fixed solar zenith angles (SZAs = 65°, 75° and 85°) are correlated to the daily ozone column provided by different instruments. For these SZAs the radiation amplification factor varied from 1.58–1.94 at 306 nm and from 0.68–0.88 at 314 nm. The ultraviolet index reached a maximum level of 8 in the summer, corresponding to the typical average summer value for mid latitude sites. The solar irradiance pertaining to the ultraviolet A (UV-A, 315–400 nm) spectral band was found to depend closely on variations of atmospheric transmittance characteristics as reported by previous studies. Model simulations of UV-B irradiance showed a good agreement with field measurements at 65° and 75° SZAs. For SZA = 85° the ozone vertical distribution significantly impacted model estimations. Sensitivity analysis performed by hypothetically varying the ozone distribution revealed some features of the ozone profiles that occurred in the period studied here.

Copyright

Corresponding author

References

Hide All
Anderson, G.P., Clough, S.A., Kneizys, F.X., Chetwynd, J.H.Shettle, E.P. 1986. AFGL atmospheric constituent profiles (0–120 km). AFGL-TR-86-0110, Environmental Research Papers, No. 954. Hanscom AFB, MA: Optical Physics Division, Air Force Geophysics Laboratory, 43 pp.
Bernhard, G., Booth, C.R.Ehramjian, J.C. 2004. Version 2 data of the National Science Foundation's ultraviolet radiation monitoring network: South Pole. Journal of Geophysical Research, 109, 10.1029/2004JD004937.
Blumthaler, M., Salzgeber, M.Ambach, W. 1995. Ozone and ultraviolet-B irradiance: experimental determination of the radiation amplification factor. Photochemistry and Photobiology, 61, 159162.
Booth, C.R.Madronich, S. 1994. Radiation amplification factors: improved formulation accounts for large increases in ultraviolet radiation associated with Antarctic ozone depletion. Antarctic Research Series, 62, 3942.
Brasseur, G.P.Solomon, S. 2005. Aeronomy of the middle atmosphere. Berlin: Springer, 646 pp.
Calbó, J., Pagès, D.González, J.A. 2005. Empirical studies of cloud effects on UV radiation: A review. Reviews of Geophysics, 43, 10.1029/2004RG000155.
Cotter, E.S.N., Jones, A.E., Wolff, E.W.Bauguitte, S. 2003. What controls photochemical NO and NO2 production from Antarctic snow? Laboratory investigation assessing the wavelength and temperature dependence. Journal of Geophysical Research, 108, 10.1029/2002JD002602.
Dahlback, A. 1996. Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel moderate bandwidth filter instruments. Applied Optics, 35, 65146521.
Degünther, M.Meerkötter, R. 2000. Effect of remote clouds on surface UV irradiance. Annales Geophysicae, 18, 679686.
Farman, J.C., Gardiner, B.G.Shanklin, J.D. 1985. Large losses of total ozone in Antarctica reveal seasonal C1Ox/NOx interaction. Nature, 315, 207210.
Hernandez, E., Gustavo, A.F.Walter, P.M. 2002. Effect of solar radiation on two Antarctic marine bacterial strains. Polar Biology, 25, 453459.
Kazantzidis, A., Bais, A.F., Balis, D.S., Kosmidis, E.Zerefos, C.S. 2005. Sensitivity of solar UV radiation to ozone and temperature profiles at Thessaloniki (40.5°N, 23°E), Greece. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 13211330.
Lapeta, B., Engelsen, O., Litynska, Z., Kois, B.Kylling, A. 2000. Sensitivity of surface UV radiation and ozone column retrieval to ozone and temperature profiles. Journal of Geophysical Research, 105, 50015007.
Láska, K., Prošek, P., Budík, L., Budíková, M.Milinevsky, G. 2009. Prediction of erythemally effective UVB radiation by means of nonlinear regression model. Environmetrics, 20, 633646.
Long, C.N.Ackerman, T.P. 2000. Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. Journal of Geophysical Research, 105, 15 60915 626.
Lubin, D.Frederick, J.E. 1991. The ultraviolet radiation environment of the Antarctic Peninsula: the roles of ozone and cloud cover. Journal of Applied Meteorology, 30, 478493.
Madronich, S. 1993. UV radiation in the natural and perturbed atmosphere. In Tevini, M., ed. Environmental effects of UV (ultraviolet) radiation. Boca Raton, FL: Lewis Publishers, 1769.
Madronich, S.Flocke, S. 1997. Theoretical estimation of biologically effective UV radiation at the Earth's surface. In Zerefos, C.,ed. Solar ultraviolet radiation - modeling, measurements and effects. NATO ASI Series 152. Berlin: Springer, 2348.
McElroy, C.T., Kerr, J.B., McArthur, L.J.B.Wardle, D.I. 1994. Ground-based monitoring of UV-B radiation in Canada. In Biggs, R.H.&Joyner, M.E.B.,eds. Global environmental change. NATO ASI Series 1. Berlin: Springer, 271282.
McKenzie, R., Smale, D., Bodeker, G.Claude, H. 2003. Ozone profile differences between Europe and New Zealand: effects on surface UV irradiance and its estimation from satellite sensors. Journal of Geophysical Research, 108, 10.1029/2002JD002770.
McKinlay, A.F.Diffey, B.L. 1987. A reference action spectrum for ultraviolet induced erythema in human skin. Commission Internationale de l'Eclairage Journal, 6, 1722.
Newman, P.A., Kawa, S.R.Nash, E.R. 2004. On the size of the Antarctic ozone hole. Geophysical Research Letters, 31, 10.1029/2004GL020596.
Newman, S.J., Ritz, D.Nicol, S. 2003. Behavioural reactions of Antarctic krill (Euphausia superba Dana) to ultraviolet and photosynthetically active radiation. Journal of Experimental Marine Biology and Ecology, 297, 203217.
Ohmura, A., Dutton, E.G., Forgan, B., Frohlich, C., Gilgen, H., Hegner, H., Heimo, A., Konig-Langlo, G., McArthur, B., Muller, G., Philipona, R., Pinker, R., Whitlock, C.H., Dehne, K.Wild, M. 1998. Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bulletin of American Meteorological Society, 79, 21152136.
Petkov, B., Vitale, V., Tomasi, C., Bonafé, U., Scaglione, S., Flori, D., Santaguida, R., Gausa, M., Hansen, G.Colombo, T. 2006. Narrow-band filter radiometer for ground-based measurements of global UV solar irradiance and total ozone. Applied Optics, 45, 43834395.
Pommereau, J.-P.Goutail, F. 1988. O3 and NO2 ground based measurements by visible spectrometry during Arctic winter and spring 1988. Geophysical Research Letters, 15, 891894.
Prause, A.R., Scourfield, M.W.J., Bodeker, G.E.Diab, R.D. 1999. Surface UV-B irradiance and total column ozone above SANAE, Antarctica. South African Journal of Science, 95, 2630.
Qian, J., David, K.M.Kieber, J. 2001. Photochemical production of the hydroxyl radical in Antarctic waters. Deep-Sea Research I, 48, 741759.
Rozema, J., Boelen, P.Blokker, P. 2005. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environmental Pollution, 137, 428442.
Setlow, R.B. 1974. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proceedings of the National Academy of Sciences of the United States of America, 71, 33633366.
Smith, R.C., Wan, Z.Baker, K.S. 1992. Ozone depletion in Antarctica: modeling its effect on solar UV irradiance under clear-sky conditions. Journal of Geophysical Research, 97, 73837397.
Solomon, S., Portmann, R.W., Sasaki, T., Hofmann, D.J.Thompson, D.W.J. 2005. Four decades of ozonesonde measurements over Antarctica. Journal of Geophysical Research, 110, 10.1029/2005JD005917.
Stamnes, K., Jin, Z.Slusser, J. 1992. Several-fold enhancement of biologically effective ultraviolet radiation levels at McMurdo station Antarctica during the 1990 ozone “hole”. Geophysical Research Letters, 19, 10131016.
Stamnes, K., Slusser, J.Bowen, M. 1991. Derivation of total ozone abundance and cloud effects from spectral irradiance measurements. Applied Optics, 30, 44184426.
Stolarski, R.S., McPeters, R.D.Newman, P.A. 2005. The ozone hole of 2002 as measured by TOMS. Journal of Atmospheric Sciences, 62, 716720.
Tomasi, C., Petkov, B., Stone, R.S., Benedetti, E., Vitale, E., Lupi, A., Mazzola, M., Lanconelli, C., Herber, A.von Hoyningen-Huene, W. 2010. Characterizing polar atmospheres and their effect on Rayleigh-scattering optical depth. Journal of Geophysical Research, 115, 10.1029/2009JD012852.
Tomasi, C., Vitale, V., Lupi, A., Di Carmine, C., Campanelli, M., Herber, A., Treffeisen, R., Stone, R.S., Andrews, E., Sharma, S., Radionov, V., von Hoyningen-Huene, W., Stebel, K., Hansen, G.H., Myhre, C.L., Wehrli, C., Aaltonen, V., Lihavainen, H., Virkkula, A., Hillamo, R., Ström, J., Toledano, C., Cachorro, V.E., Ortiz, P., De Frutos, A.M., Blindheim, S., Frioud, M., Gausa, M., Zielinski, T., Petelski, T.Yamanouchi, T. 2007. Aerosols in polar regions: a historical overview based on optical depth and in situ observations. Journal of Geophysical Research, 112, 10.1029/2007JD008432.
Wolff, E.W., Jones, A.E., Martin, T.J.Grenfell, T.C. 2002. Modelling photochemical NOX production and nitrate loss in the upper snowpack of Antarctica. Geophysical Research Letters, 29, 10.1029/2002GL015823.
World Health Organization. 2002. Global solar UV index: a practical guide. Geneva, Switzerland: World Health Organisation, 18 pp.
World Meteorological Organization. 2003. Scientific assessment of ozone depletion: 2002. World Meteorological Organization Global Ozone Research and Monitoring Project Report, No. 47.

Keywords

Variations of UV irradiance at Antarctic station Concordia during the springs of 2008 and 2009

  • Vito Vitale (a1), Boyan Petkov (a1) (a2), Florence Goutail (a3), Christian Lanconelli (a1), Angelo Lupi (a1), Mauro Mazzola (a1), Maurizio Busetto (a1), Andrea Pazmino (a3), Riccardo Schioppo (a4), Laura Genoni (a5) and Claudio Tomasi (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed