[1]Allman, E. S., Jarvis, P. D., Rhodes, J. A. and Sumner, J. G., “Tensor rank, invariants, inequalities, and applications”, SIAM. J. Matrix Anal. Appl. 34 (2013) 1014–1045; doi:10.1137/120899066. [2]Allman, E. S. and Rhodes, J. A., “Phylogenetic ideals and varieties for the general Markov model”, Adv. Appl. Math. 20 (2007) 127–148; doi:10.1016/j.aam.2006.10.002. [3]Barry, D. and Hartigan, J. A., “Asynchronous distance between homologous DNA sequences”, Biometrics 43 (1987) 261–276; doi:10.2307/2531811. [4]Buneman, P., “The recovery of trees from measures of dissimilarity”, in: Mathematics in the archaeological and historical sciences (Edinburgh University Press, Edinburgh, 1971) 387–395.
[5]Cavender, J. A. and Felsenstein, J., “Invariants of phylogenies in a simple case with discrete states”, J. Classification 4 (1987) 57–71; doi:10.1007/BF01890075. [6]Coffman, V., Kundu, J. and Wootters, W. K., “Distributed entanglement”, Phys. Rev. A 61 (2000); doi:10.1103/PhysRevA.61.052306. [8]Fauser, B. and Jarvis, P. D., “A Hopf laboratory for symmetric functions”, J. Phys. A: Math. Gen. 37 (2004) 1633–1663; doi:10.1088/0305-4470/37/5/012. [9]Fauser, B., Jarvis, P. D., King, R. C. and Wybourne, and B. G., “New branching rules induced by plethysm”, J. Phys. A: Math. Gen. 39 (2006) 2611–2655; doi:10.1088/0305-4470/39/11/006. [10]Goodman, R. and Wallach, N. R., Representations and invariants of the classical groups, Volume 68 of Enyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1998).
[11]Grassl, M., Rötteler, M. and Beth, T., “Computing local invariants of quantum-bit systems”, Phys. Rev. A 58 (1998) 1833–1839; doi:10.1103/PhysRevA.58.1833. [12]Hall, B. C., Quantum theory for mathematicians, Volume 267 of Graduate Texts in Mathematics (Springer, New York, 2013).
[13]Holland, B. R., Jarvis, P. D. and Sumner, J. G., “Low-parameter phylogenetic inference under the general Markov model”, Syst. Biol. 62 (2013) 78–92; doi:10.1093/sysbio/sys072. [14]Horodecki, R., Horodecki, P., Horodecki, M. and Horodecki, K., “Quantum entanglement”, Rev. Mod. Phys. 81 (2009) 865–942; doi:10.1103/RevModPhys.81.865. [15]Jarvis, P. D., “The mixed two qutrit system: local unitary invariants, entanglement monotones and the SLOCC group
$SL(3,\mathbb{C})$”, J. Phys. A: Math. Gen. 47 (2014) 215–302; doi:10.1088/1751-8113/47/21/215302. [16]Jarvis, P. D. and Sumner, J. G., “Matrix group structure and Markov invariants in the strand symmetric phylogenetic substitution model”, Preprint, 15 pp., arXiv:1307.5574. [17]Jarvis, P. D. and Sumner, J. G., “Markov invariants for phylogenetic rate matrices derived from embedded submodels”, Trans. Comp. Biol. Bioinform. 9 (2012) 828–836; doi:10.1109/TCBB.2012.24. [18]Johnson, J. E., “Markov-type Lie groups in
$\text{GL}(n,\mathbb{R})$”, J. Math. Phys. 26 (1985) 252–257; doi:10.1109/TCBB.2012.24. [19]King, R. C., Welsh, T. A. and Jarvis, P. D., “The mixed two-qubit system and the structure of its ring of local invariants”, J. Phys. A: Math. Theor. 40 (2007) 10083; doi:10.1088/1751-8113/40/33/011. [20]Lake, J. A., “A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony”, Mol. Biol. Evol. 4(2) (1987) 167–191.
[21]Lake, J. A., “Reconstructing evolutionary trees from DNA and protein sequences: Paralinear distances”, Proc. Natl. Acad. Sci., USA 91 (1994) 1455–1459; doi:10.1073/pnas.91.4.1455. [22]Littlewood, D. E., The theory of group characters (Clarendon Press, Oxford, 1940).
[23]Lockhart, P. J., Steel, M. A., Hendy, M. D. and Penny, D., “Recovering evolutionary trees under a more realistic model of sequence evolution”, Mol. Biol. Evol. 11 (1994) 605–612;http://www.ncbi.nlm.nih.gov/pubmed/19391266. [24]Makhlin, Y., “Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations”, Quantum Inf. Process. 1 (2002) 243–252; doi:10.1023/A:1022144002391. [26]Mourad, B., “On a Lie-theoretic approach to generalised doubly stochastic matrices and applications”, Linear Multilinear Algebra 52 (2004) 99–113; doi:10.1080/0308108031000140687. [27]Semple, C. and Steel, M., Phylogenetics (Oxford University Press, Oxford, 2003).
[28]Sumner, J. G., “Entanglement, invariants, and phylogenetics”, Ph. D. Thesis, University of Tasmania, 2006.
[29]Sumner, J. G., Charleston, M. A., Jermiin, L. S. and Jarvis, P. D., “Markov invariants, plethysms, and phylogenetics”, J. Theor. Biol. 253 (2008) 601–615; doi:10.1016/j.jtbi.2008.04.001. [30]Sumner, J. G. and Jarvis, P. D., “Entanglement invariants and phylogenetic branching”, J. Math. Biol. 51 (2005) 18–36 (erratum); 53 (2006) 490; doi:10.1007/s00285-004-0309-z. [31]Sumner, J. G. and Jarvis, P. D., “Using the tangle: A consistent construction of phylogenetic distance matrices for quartets”, Math. Biosci. 204 (2006) 49–67; doi:10.1016/j.mbs.2006.05.008. [32]Sumner, J. G. and Jarvis, P. D., “Markov invariants and the isotropy subgroup of a quartet tree”, J. Theor. Biol. 258 (2009) 302–310; doi:10.1016/j.jtbi.2009.01.021. [33]Sumner, J. G., Jarvis, P. D., Allman, E. S. and Rhodes, J. A., “Phylogenetic invariants from group characters alone”, in preparation, 2014.
[34]Sumner, J., Fernández-Sánchez, J. and Jarvis, P., “Lie Markov models”, J. Theor. Biol. 298 (2012) 16–31; doi:10.1016/j.jtbi.2011.12.017. [35]Sumner, J., Fernández-Sánchez, J., Woodhams, M. and Jarvis, P., “Lie Markov models with purine/pyrimidine symmetry”, J. Math. Biol. (2014) 1–47; doi:10.1007/s00285-014-0773-z. [36]Verstraete, F., Dehaene, J., de Moor, B. and Verschelde, H., “Four qubits can be entangled in nine different ways”, Phys. Rev. A 65 (2002) 052112; doi:10.1103/PhysRevA.65.052112. [38]Weyl, H., The classical groups: their invariants and representations (Princeton University Press, Princeton, NJ, 1939).
[39]Wybourne, B. G. et al. , SCHUR group theory software, an interactive program for calculating properties of Lie groups and symmetric functions, http://schur.sourceforge.net/.