Skip to main content
×
Home
    • Aa
    • Aa

AN ALTERNATIVE METHOD OF CONCEPT LEARNING

  • SEN WANG (a1), QINGXIANG FANG (a2) and JUN-E FENG (a1)
Abstract

We solve the problem of concept learning using a semi-tensor product method. All possible hypotheses are expressed under the framework of a semi-tensor product. An algorithm is raised to derive the version space. In some cases, the new approach improves the efficiency compared to the previous approach.

Copyright
Corresponding author
fengjune@sdu.edu.c
References
Hide All
[1] Cheng D., “Semi-tensor product of matrices and its application to Morgen’s problem”, Sci. China Inf. Sci. 44 (2001) 195212; doi:10.1007/BF02714570.
[2] Cheng D. and Qi H., “Controllability and observability of Boolean control networks”, Automatica 45 (2009) 16591667; doi:10.1016/j.automatica.2009.03.006.
[3] Cheng D. and Qi H., “A linear representation of dynamics of Boolean networks”, IEEE Trans. Automat. Control 55(10) (2010) 22512258; doi:10.1109/TAC.2010.2043294.
[4] Cheng D., Qi H., Li Z. and Liu J., “Stability and stabilization of Boolean networks”, Internat. J. Robust Nonlinear Control 21 (2011) 134156; doi:10.1002/rnc.1581.
[5] Haussler D., “Quantifying inductive bias: AI learning algorithms and Valiant’s learning framework”, Artificial Intelligence 36 (1988) 177221; doi:10.1016/0004-3702(88)90002-1.
[6] Mitchell T. M., Machine learning (McGraw-Hill, Boston, MA, 1997); https://www.iitgn.ac.in/sites/default/files/library_files/2016/19032016.pdf.
[7] Mitchell T. M., “Version spaces: a candidate elimination approach to rule learning”, in: IJCAI’77 Proceedings of the 5th international joint conference on Artificial intelligence - Volume 1 (Morgan Kaufmann Publishers Inc., San Francisco, CA, 1977) 305310; http://dl.acm.org/citation.cfm?id=1624501.
[8] Zhao Y., Qi H. and Cheng D., “Input-state incidence matrix of Boolean control networks and its applications”, Systems Control Lett. 59 (2010) 767774; doi:10.1016/j.sysconle.2010.09.002.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The ANZIAM Journal
  • ISSN: 1446-1811
  • EISSN: 1446-8735
  • URL: /core/journals/anziam-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 163 *
Loading metrics...

* Views captured on Cambridge Core between 6th March 2017 - 19th October 2017. This data will be updated every 24 hours.