Skip to main content Accessibility help



The Douglas–Rachford method has been employed successfully to solve many kinds of nonconvex feasibility problems. In particular, recent research has shown surprising stability for the method when it is applied to finding the intersections of hypersurfaces. Motivated by these discoveries, we reformulate a second order boundary value problem (BVP) as a feasibility problem where the sets are hypersurfaces. We show that such a problem may always be reformulated as a feasibility problem on no more than three sets and is well suited to parallelization. We explore the stability of the method by applying it to several BVPs, including cases where the traditional Newton’s method fails.

Corresponding author
Hide All
[1] Aragón Artacho, F. J. and Borwein, J. M., “Global convergence of a non-convex Douglas–Rachford iteration”, J. Global Optim. 57 (2013) 753769; doi:10.1007/s10898-012-9958-4.
[2] Aragón Artacho, F. J., Borwein, J. M. and Tam, M. K., “Recent results on Douglas–Rachford methods for combinatorial optimization problems”, J. Optim. Theory Appl. 163 (2014) 130; doi:10.1007/s10957-013-0488-0.
[3] Aragón Artacho, F. J., Borwein, J. M. and Tam, M. K., “Douglas–Rachford feasibility methods for matrix completion problems”, ANZIAM J. 55 (2014) 299326; doi:10.1017/S1446181114000145.
[4] Aragón Artacho, F. J. and Campoy, R., “Solving graph coloring problems with the Douglas–Rachford algorithm”, Set-Valued Var. Anal. 26 (2018) 277304; doi:10.1007/s11228-017-0461-4.
[5] Bauschke, H. H. and Combettes, P. L., Convex analysis and monotone operator theory in Hilbert spaces, 2nd edn (Springer, Cham, 2017); doi:10.1007/978-3-319-48311-5.
[6] Bauschke, H. H., Combettes, P. L. and Luke, D. R., “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization”, J. Opt. Soc. Amer. A 19 (2002) 13341345; doi:10.1364/JOSAA.19.001334.
[7] Benoist, J., “The Douglas–Rachford algorithm for the case of the sphere and the line”, J. Global Optim. 63 (2015) 363380; doi:10.1007/s10898-015-0296-1.
[8] Borwein, J. M., Lindstrom, S. B., Sims, B., Schneider, A. and Skerritt, M. P., “Dynamics of the Douglas–Rachford method for ellipses and $p$ -spheres”, Set-Valued Var. Anal. 26 (2018) 385403; doi:10.1007/s11228-017-0457-0.
[9] Borwein, J. M. and Sims, B., “The Douglas–Rachford algorithm in the absence of convexity”, in: Fixed-point algorithms for inverse problems in science and engineering, Volume 49 of Springer Optim. Appl. (Springer, New York, 2011) 93109; doi:10.1007/978-1-4419-9569-8_6.
[10] Borwein, J. M. and Tam, M. K., “Reflection methods for inverse problems with applications to protein conformation determination”, Springer volume on the CIMPA school Generalized Nash equilibrium problems, bilevel programming and MPEC, New Delhi, India, December 2012; doi:10.1007/978-981-10-4774-9_5.
[11] Borwein, J. M. and Tam, M. K., “A cyclic Douglas–Rachford iteration scheme”, J. Optim. Theory Appl. 160 (2014) 129; doi:10.1007/s10957-013-0381-x.
[12] Burden, R. L., Faires, D. J. and Burden, A. M., Numerical analysis (Cengage Learning, Boston, MA, 2016).
[13] Dao, M. N. and Phan, H. M., “Linear convergence of projection algorithms”, Preprint, 2016,arXiv:1609.00341.
[14] Dao, M. N. and Tam, M. K., “A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm”, J. Global Optim. 73 (2019) 83112; doi:10.1007/s10898-018-0677-3.
[15] Douglas, J. and Rachford, H. H., “On the numerical solution of the heat conduction problem in 2 and 3 space variables”, Trans. Amer. Math. Soc. 82 (1956) 421439; doi:10.2307/1993056.
[16] Elser, V., Rankenburg, I. and Thibault, P., “Searching with iterated maps”, Proc. Natl. Acad. Sci. USA 104 (2007) 418423; doi:10.1073/pnas.0606359104.
[17] Gravel, S. and Elser, V., “Divide and concur: a general approach to constraint satisfaction”, Phys. Rev. E 78 (2008) 036706; doi:10.1103/PhysRevE.78.036706.
[18] Keller, H. B., Numerical methods for two-point boundary value problems (Blaisdell, Waltham, MA, 1968).
[19] Lewis, A. S., Luke, D. R. and Malick, J., “Local linear convergence for alternating and averaged nonconvex projections”, Found. Comput. Math. 9 (2009) 485513; doi:10.1007/s10208-008-9036-y.
[20] Lindstrom, S. B. and Sims, B., “Survey: sixty years of Douglas–Rachford”, Preprint, 2018,arXiv:1809.07181.
[21] Lindstrom, S. B., Sims, B. and Skerritt, M. P., “Computing intersections of implicitly specified plane curves”, J. Nonlinear Convex Anal. 18 (2017) 347359;
[22] Lions, P. L. and Mercier, B., “Splitting algorithms for the sum of two nonlinear operators”, SIAM J. Numer. Anal. 16 (1979) 964979; doi:10.1137/0716071.
[23] Phan, H. M., “Linear convergence of the Douglas–Rachford method for two closed sets”, Optimization 65 (2016) 369385; doi:10.1080/02331934.2015.1051532.
[24] Pierra, G., “Decomposition through formalization in a product space”, Math. Program. 28 (1984) 96115;
[25] Roberts, A. W. and Varberg, D. E., Convex functions (Academic Press, New York, 1973).
[26] Svaiter, B. F., “On weak convergence of the Douglas–Rachford method”, SIAM J. Control Optim. 49 (2011) 280287; doi:10.1137/100788100.
[27] Weisstein, E. W., “Heaviside step function”, Wolfram MathWorld, Wolfram Web Resources;
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The ANZIAM Journal
  • ISSN: 1446-1811
  • EISSN: 1446-8735
  • URL: /core/journals/anziam-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed