Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T09:49:17.744Z Has data issue: false hasContentIssue false

Asymptotic estimates for symmetric vortex streets

Published online by Cambridge University Press:  17 February 2009

G. Keady
Affiliation:
Mathematics Department, University of Western Australia, Nedlands, W.A. 6009.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Steady plane inviscid symmetric vortex streets are flows defined in the strip R × (0, b) and periodic in x with period 2a in which the flow in (−a, a) × (0, b) is irrotational outside a vortex core on which the vorticity takes a prescribed constant value. A family of such vortex street flows, characterised by a variational principle in which the area |Aα| and the centroid yc of the vortex core Aα are fixed, will be considered. For such a family, indexed by a parameter α, suppose that the cores Aα become small in the sense that

Asymptotic estimates on functionals such as flux constant and speed are obtained.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Benjamin, T. B., “The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics”, in Applications of methods of functional analysis to problems in mechanics, Symposium IUTAM/IMU Marseilles Sept. 1975 (eds. Germain, P. and Nayroles, B.), Lecture Notes in Math. 503 (Springer, Berlin, 1976), 829.Google Scholar
[2]Berger, M. S. and Fraenkel, L. E., “Nonlinear desingularization in certain free-boundary problem”, Comm. Math. Phys. 77 (1980), 149172.CrossRefGoogle Scholar
[3]Caffarelli, L. A. and Friedman, A., “Asymptotic estimates for the plasma problem”, Duke Math. J. 47 (1980), 705762.CrossRefGoogle Scholar
[4]Fraenkel, L. E., “A lower bound for electrostatic capacity in the plane”, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 267273.Google Scholar
[5]Fraenkel, L. E. and Berger, M. S., “A global theory of steady vortex rings in an ideal fluid”, Acta Math. 132(1974), 1351.CrossRefGoogle Scholar
[6]Friedman, A. and Turkington, B., “Vortex rings: existence and asymptotic estimates”, Trans. Amer. Math. Soc. 268 (1981), 138.CrossRefGoogle Scholar
[7]Gidas, B., Ni, W. and Nirenberg, L., “Symmetry via the maximum principle”, Comm. Math. Phys. 68(1979), 209243.CrossRefGoogle Scholar
[8]Keady, G. and Norbury, J., “A semilinear elliptic eigenvalue problem, part II”, Proc. Roy. Soc. Edinburgh Sect. A 87 (1980), 83109.Google Scholar
[9]Keady, G., “An elliptic boundary-value problem with a discontinuous nonlinearity”, Proc. Roy. Soc. Edinburgh Sect. A 91 (1981), 161174.Google Scholar
[10]Keady, G., “Existence and asymptotic estimates for symmetric vortex streets”, Res. Rep. Math. Dep. Univ. Western Australia (01 1983).Google Scholar
[11]Lamb, H., Hydrodynamics (Cambridge University Press, 6th edition, 1932).Google Scholar
[12]Lichtenstein, L., “Uber einige Existenzprobleme der Hydrodynamik”, Math. Z. 23 (1925), 89154.CrossRefGoogle Scholar
[13]Lichtenstein, L.. Grundlagen der hydrodynamik (Springer, Berlin, 1929).Google Scholar
[14]McLeon, B., “Rearrangements”, preprint (1983).Google Scholar
[15]Moore, D. W. and Saffman, P. G., “Structure of a line vortex in an imposed strain”, in Aircraft wake turbulence (eds. Olsen, J., Goldberg, A. and Rogers, M.), (Plenum Press, New York, 1971), 339354.CrossRefGoogle Scholar
[16]Payne, L. E., “Isoperimetric inequalities and their application”, SIAM Rev. 9 (1967), 453458.CrossRefGoogle Scholar
[17]Pierrehumbert, R. T. and Widnall, S. E., “The structure of organised vortices in a free shear layer”, J. Fluid Mech. 102 (1981), 301314.CrossRefGoogle Scholar
[18]Polya, G. and Szego, G., Isoperimetric inequalities in mathematical physics (Princeton Univ. Press, 1951).Google Scholar
[19]Rosenhead, L.. “The Karman street of vortices in a channel of finite breadth”, Philos. Trans. Roy. Soc. London Ser. A 228 (1929), 275329.Google Scholar
[20]Saffman, P. G., “The approach of a vortex pair to a plane surface in an inviscid flow”, J. Fluid Mech. 92 (1979), 497503.CrossRefGoogle Scholar
[21]Saffman, P. G. and Szeto, R., “Structure of a linear array of uniform vortices”, Stud. Appl. Math. 65 (1981), 223248.CrossRefGoogle Scholar
[22]Turkington, B., “On steady vortex flow in two dimensions, I”, Comm. Partial Differential Equations 8 (1983), 9991030.CrossRefGoogle Scholar
[23]Turkington, B., “On steady vortex flow in two dimensions, II”, Comm. Partial Differential Equations 8(1983), 10311071.CrossRefGoogle Scholar