Skip to main content Accessibility help
×
×
Home

A Bäcklund transformation and nonlinear superposition formula for the Lotka-Volterra hierarchy

  • Xing-Biao Hu (a1) (a2) and Johan Springael (a3)
Abstract

A hierarchy of bilinear Lotka-Volterra equations with a unified structure is proposed. The bilinear Bäcklund transformation for this hierarchy and the corresponding canonical Lax pair are obtained. Furthermore, the nonlinear superposition formula is proved rigorously.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A Bäcklund transformation and nonlinear superposition formula for the Lotka-Volterra hierarchy
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A Bäcklund transformation and nonlinear superposition formula for the Lotka-Volterra hierarchy
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A Bäcklund transformation and nonlinear superposition formula for the Lotka-Volterra hierarchy
      Available formats
      ×
Copyright
References
Hide All
[1]Ablowitz, M. J. and Segur, H., Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981).
[2]Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H., “The inverse scattering transform—Fourier analysis for nonlinear problems”, Stud. Appl. Math. 53 (1974) 249315.
[3]Bogoyavlensky, O. I., “Integrable discretizations of the KdV equation”, Phys. Lett. A 134 (1988) 3438.
[4]Fokas, A. S. and Santini, P. M., “Recursion operators and bi-Hamiltonian structures in multidimensions. II”, Comm. Math. Phys. 116 (1988) 449474.
[5]Fuchssteiner, B., “Application of hereditary symmetries to nonlinear evolution equations”, Nonlinear Anal. Theory Meth. Appl. 3 (1979) 849862.
[6]Hirota, R., “Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett. 27 (1971) 11921194.
[7]Hirota, R., “Nonlinear partial difference equations I. A difference analogue of the Korteweg-de Vries equation”, J. Phys. Soc. Japan 43 (1977) 14241433.
[8]Hirota, R., “Direct methods in soliton theory”, in Solitons (eds. Bullough, R. K. and Caudrey, P. J.), (Springer, Berlin, 1980).
[9]Hirota, R. and Satsuma, J., “N-soliton solutions of nonlinear network equations describing a Volterra system”, J. Phys. Soc. Japan 40 (1976) 891900.
[10]Hirota, R. and Satsuma, J., “A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice”, Prog. Theor. Phys. Suppl. 59 (1976) 64100.
[11]Hu, X. B., “Integrable systems and related problems”, Ph. D. Thesis, Computing Center of Academia Sinica, 1990.
[12]Hu, X. B., “Bilinearization of nonlinear integrable evolution equations—Recursion operator approach”, preprint, Computing Center of Academia Sinica, 1991.
[13]Hu, X. B., “Nonlinear superposition formulae for the differential-difference analogue of the KdV equation and two dimensional Toda equation”, J. Phys. A: Math. Gen. 27 (1994) 201214.
[14]Hu, X. B. and Bullough, R. K., “Bäcklund transformation and nonlinear superposition formula of an extended Lotka-Volterra equation”, J. Phys. A: Math. Gen. 30 (1997) 36353641.
[15]Hu, X. B. and Clarkson, P. A., “Rational solutions of a differential-difference KdV equation, the Toda equation and the discrete KdV equation”, J. Phys. A: Math. Gen. 28 (1995)50095016.
[16]Itoh, Y., “On a ruin problem with interaction”, Ann. Inst. Stat. Math. 25 (1973) 635641.
[17]Itoh, Y., “Integrals of a Lotka-Volterra system of odd number of variables”, Prog. Theor. Phys. 78 (1987) 507510.
[18]Manakov, S. V., “Complete integrability and stochastization of discrete dynamical systems”, Sov. Phys. JETP 40 (1974) 269274.
[19]Matsuno, Y., Bilinear Transformation Method (Academic Press, New York, 1984).
[20]Nagai, A. and Satsuma, J., “The Lotka-Volterra equations and the QR algorithm”, J. Phys. Soc. Japan 64 (1995) 3669.
[21]Narita, K., “Soliton solution to extended Volterra equations”, J. Phys. Soc. Japan 51 (1982) 1682.
[22]Newell, A. C., Solitons in Mathematics and Physics (SIAM, Philadelphia, 1985).
[23]Olver, P. J., “Evolution equations possessing infinitely many symmetries”, J. Math. Phys. 18 (1977) 12121215.
[24]Santini, P. M. and Fokas, A. S., “Recursion operators and bi-Hamiltonian structures in multidimensions. I”, Comm. Math. Phys. 115 (1988) 375419.
[25]Willox, R., Lambert, F. and Springael, J., “Canonical bilinear systems and soliton resonances”, in Application of Analytic and Geometric Methods to Nonlinear Differential Equations (ed. Clarkson, P. A.), (Kluwer, Dordrecht, 1993) 257270.
[26]Zakharov, V. E., Musher, S. L. and Rubenchik, A. M., “Nonlinear stage of parametric wave excitation in plasma”, JETP. Lett. 19 (1974) 151153.
[27]Zhang, H. W., Tu, G. Z., Oevel, W. and Fuchssteiner, B., “Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure”, J. Math. Phys. 32 (1991) 19081918.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The ANZIAM Journal
  • ISSN: 1446-1811
  • EISSN: 1446-8735
  • URL: /core/journals/anziam-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed