Skip to main content Accessibility help
×
×
Home

BI-LEVEL PROGRAMMING APPROACH TO OPTIMAL STRATEGY FOR VENDOR-MANAGED INVENTORY PROBLEMS UNDER RANDOM DEMAND

  • YINXUE LI (a1), ZHONG WAN (a1) and JINGJING LIU (a1)

Abstract

We present an extension of vendor-managed inventory (VMI) problems by considering advertising and pricing policies. Unlike the results available in the literature, the demand is supposed to depend on the retail price and advertising investment policies of the manufacturer and retailers, and is a random variable. Thus, the constructed optimization model for VMI supply chain management is a stochastic bi-level programming problem, where the manufacturer is the upper level decision-maker and the retailers are the lower-level ones. By the expectation method, we first convert the stochastic model into a deterministic mathematical program with complementarity constraints (MPCC). Then, using the partially smoothing technique, the MPCC is transformed into a series of standard smooth optimization subproblems. An algorithm based on gradient information is developed to solve the original model. A sensitivity analysis has been employed to reveal the managerial implications of the constructed model and algorithm: (1) the market parameters of the model generate significant effects on the decision-making of the manufacturer and the retailers, (2) in the VMI mode, much attention should be paid to the holding and shortage costs in the decision-making.

Copyright

Corresponding author

References

Hide All
[1] Birge, J. R., Qi, L. and Wei, Z., “A variant of the Topkis–Veinott method for solving inequality constrained optimization problems”, Appl. Math. Optim. 41 (2000) 309330 ; doi:10.1007/s002459911015.
[2] Burgin, T. A., “Inventory control with normal demand and gamma lead times”, J. Oper. Res. Soc. 23 (1972) 7380; doi:10.1057/jors.1972.7.
[3] Chen, X., Hao, G., Li, X. and Yiu, K. F. C., “The impact of demand variability and transshipment on vendor’s distribution policies under vendor managed inventory strategy”, Int. J. Prod. Econ. 139 (2012) 4248; doi:10.1016/j.ijpe.2011.05.005.
[4] Chen, X. R., Liu, Y. M. and Wan, Z., “Optimal decision-making for the online and offline retailers under BOPS model”, ANZIAM J. 58 (2016) 187208; doi:10.1017/S1446181116000201.
[5] Chen, Y. and Wan, Z., “A locally smoothing method for mathematical programs with complementarity constraints”, ANZIAM J. 56 (2015) 299315; doi:10.1017/S1446181115000048.
[6] Chu, Y. and You, F., “Integrated scheduling and dynamic optimization by Stackelberg game: bilevel model formulation and efficient solution algorithm”, Ind. Eng. Chem. Res. 53 (2014) 55645581; doi:10.1021/ie404272t.
[7] Fong, D. K. H., Gempesaw, V. M. and Ord, J. K., “Analysis of a dual sourcing inventory model with normal unit demand and Erlang mixture lead times”, European J. Oper. Res. 120 (2000) 97107; doi:10.1016/S0377-2217(98)00394-4.
[8] Giri, B. C., Bardhan, S. and Maiti, T., “Coordinating a three-layer supply chain with uncertain demand and random yield”, Int. J. Prod. Res. 54 (2016) 24992518 ; doi:10.1080/00207543.2015.1119324.
[9] Govindan, K., “The optimal replenishment policy for time-varying stochastic demand under vendor managed inventory”, European J. Oper. Res. 242 (2015) 402423; doi:10.1016/j.ejor.2014.09.045.
[10] Goyal, S. K. and Gunasekaran, A., “An integrated production-inventory-marketing model for deteriorating items”, Comput. Ind. Eng. 28 (1995) 755762; doi:10.1016/0360-8352(95)00016-T.
[11] Hohmann, S. and Zelewski, S., “Effects of vendor-managed inventory on the bullwhip effect”, IJISSCM 4 (2012) 117; doi:10.4018/jisscm.2011070101.
[12] Huang, S. and Wan, Z., “A new nonmonotone spectral residual method for nonsmooth nonlinear equations”, J. Comput. Appl. Math. 313 (2017) 82101; doi:10.1016/j.cam.2016.09.014.
[13] Huynh, C. H. and Pan, W., “Operational strategies for supplier and retailer with risk preference under VMI contract”, Int. J. Prod. Econ. 169 (2015) 413421; doi:10.1016/j.ijpe.2015.07.026.
[14] Karray, S. and Martín-Herrán, G., “A dynamic model for advertising and pricing competition between national and store brands”, European J. Oper. Res. 193 (2009) 451467 ; doi:10.1016/j.ejor.2007.11.043.
[15] Kiesmller, G. P. and Broekmeulen, R. A. C. M., “The benefit of VMI strategies in a stochastic multi-product serial two echelon system”, Comput. Oper. Res. 37 (2011) 406416 ; doi:10.1016/j.cor.2009.06.013.
[16] Lee, J. Y. and Ren, L., “Vendor-managed inventory in a global environment with exchange rate uncertainty”, Int. J. Prod. Econ. 130 (2011) 169174; doi:10.1016/j.ijpe.2010.12.006.
[17] Luo, Z. Q., Pang, J. S. and Ralph, D., Mathematical programs with equilibrium constraints (Cambridge University Press, New York, NY, 1996); doi:10.1017/CBO9780511983658.
[18] Mateen, A., Chatterjee, A. K. and Mitra, S., “VMI for single-vendor multi-retailer supply chains under stochastic demand”, Comput. Ind. Eng. 79 (2015) 95102; doi:10.1016/j.cie.2014.10.028.
[19] Mohammaditabar, D., Ghodsypour, S. H. and Hafezalkotob, A., “A game theoretic analysis in capacity-constrained supplier-selection and cooperation by considering the total supply chain inventory costs”, Int. J. Prod. Econ. 181 (2015) 8797; doi:10.1016/j.ijpe.2015.11.016.
[20] Shah, N. H., Widyadana, G. A. and Wee, H. M., “Stackelberg game for two-level supply chain with price markdown option”, Int. J. Comput. Math. 91 (2014) 10541060 ; doi:10.1080/00207160.2013.819973.
[21] Sinha, A., Malo, P., Frantsev, A., Frantsev, A. and Deb, K., “Finding optimal strategies in a multi-period multi-leader-follower Stackelberg game using an evolutionary algorithm”, Comput. Oper. Res. 41 (2014) 374385; doi:10.1016/j.cor.2013.07.010.
[22] Stanger, S. H. W., “Vendor managed inventory in the blood supply chain in Germany: evidence from multiple case studies”, Strategic Outsourcing: An Int. J. 6 (2013) 2547 ; doi:10.1108/17538291311316054.
[23] Subramanyam, S. and Kumaraswamy, S., “EOQ formula under varying marketing policies and conditions”, AIIE Trans. 13 (1981) 312314; doi:10.1080/05695558108974567.
[24] Tsao, Y. C., Lu, J. C., An, N., Al-Khayyal, F., Lu, R. W. and Han, G., “Retailer shelf-space management with trade allowance: a Stackelberg game between retailer and manufacturers”, Int. J. Prod. Econ. 148 (2014) 133144; doi:10.1016/j.ijpe.2013.09.018.
[25] Wan, Z., Zhang, S. J. and Teo, K. L., “Polymorphic uncertain nonlinear programming approach for maximizing the capacity of V-belt driving”, Optim. Eng. 15 (2014) 267292 ; doi:10.1007/s11081-012-9205-3.
[26] Wang, K. J., Makond, B. and Liu, S. Y., “Location and allocation decisions in a two-echelon supply chain with stochastic demand – a genetic-algorithm based solution”, Expert Syst. Appl. 38 (2011) 61256131; doi:10.1016/j.eswa.2010.11.008.
[27] Yang, D. and Jiao, R. J., “Simultaneous configuration of product families and supply chains for mass customization using leader-follower game theory”, in: Industrial Engineering and Engineering Management (IEEM), Malaysia, 9–12 December 2014, (IEEE, 2014) 707711.
[28] Yu, Y., Chu, F. and Chen, H., “A Stackelberg game and its improvement in a VMI system with a manufacturing vendor”, European J. Oper. Res. 192 (2009) 929948 ; doi:10.1016/j.ejor.2007.10.016.
[29] Yu, Y., Huang, G. Q. and Liang, L., “Stackelberg game-theoretic model for optimizing advertising, pricing and inventory policies in vendor managed inventory (VMI) production supply chains”, Comput. Ind. Eng. 57 (2009) 368382; doi:10.1016/j.cie.2008.12.003.
[30] Zhang, X. B., Huang, S. and Wan, Z., “Optimal pricing and ordering in global supply chain management with constraints under random demand”, Appl. Math. Model. 40 (2016) 1010510130; doi:10.1016/j.apm.2016.06.054.
[31] Zhang, X. B., Huang, S. and Wan, Z., “Stochastic programming approach to global supply chain management under random additive demand”, Oper. Res. Int. J. online (2016) 132 ; doi:10.1007/s12351-016-0269-2.
[32] Zhou, Y. W., “A comparison of different quantity discount pricing policies in a two-echelon channel with stochastic and asymmetric demand information”, European J. Oper. Res. 181 (2007) 686703; doi:10.1016/j.ejor.2006.08.001.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The ANZIAM Journal
  • ISSN: 1446-1811
  • EISSN: 1446-8735
  • URL: /core/journals/anziam-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed