Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T18:05:43.271Z Has data issue: false hasContentIssue false

Chaos in an anharmonic oscillator

Published online by Cambridge University Press:  17 February 2009

J. R. Christie
Affiliation:
School of Info. Sci. and Tech., The Flinders University of SA, South Australia.
K. Gopalsamy
Affiliation:
School of Info. Sci. and Tech., The Flinders University of SA, South Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using Melnikov's method, the existence of chaotic behaviour in the sense of Smale in a particular time-periodically perturbed planar autonomous system of ordinary differential equations is established. Examples of planar autonomous differential systems with homoclinic orbits are provided, and an application to the dynamics of a one-dimensional anharmonic oscillator is given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Abraham, R. H. and Marsden, J. E., Foundations of mechanics (Benjamin/Cummings, Reading, Massachusetts 1978).Google Scholar
[2]Arnold, V. I., Mathematical methods of classical mechanics (Springer-Verlag, New York, 1978).CrossRefGoogle Scholar
[3]Byrd, P. F. and Friedman, M. D., Handbook of elliptic integrals for engineers and scientists (Springer- Verlag, New York, 1971).CrossRefGoogle Scholar
[4]DiFilippo, F., Natarajan, V., Boyce, K. R. and Pritchard, D. E., “Classical amplitude squeezing for precision measurements”, Phys. Rev. Lett. 68 (1992) 28592862.CrossRefGoogle ScholarPubMed
[5]Guckenheimer, J. and Holmes, P. J., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Springer-Verlag, New York, 1983).CrossRefGoogle Scholar
[6]Holmes, P. J., “A nonlinear oscillator with a strange attractor”, Phil. Trans. Roy. Soc. A 292 (1979) 419448.Google Scholar
[7]Holmes, P. J., “Nonlinear oscillations and the Smale horseshoe map”, Proc. Symp. Appl. Math. 39 (1989) 2540.CrossRefGoogle Scholar
[8]Holmes, P. J. and Marsden, J. E., “Horseshoes in perturbations of Hamiltonians with two degrees of freedom”, Comm. Math. Phys. 82 (1982) 523544.CrossRefGoogle Scholar
[9]Lichtenberg, A. J. and Lieberman, M. A., Regular and stochastic motion (Springer-Verlag, New York, 1982).Google Scholar
[10]Marsden, J. E., “Chaos in dynamical systems by the Poincaré-Melnikov-Arnold method”, in Chaos in nonlinear dynamical systems (ed. Chandra, J.), (SIAM, Philadelphia, 1984) 1931.Google Scholar
[11]Melnikov, V. K., “On the stability of the center for time periodic perturbations”, Trans. Moscow Math. Soc. 12 (1963) 157.Google Scholar
[12]Poincaré, H., “Sur les équations de la dynamique et le problème des trois corps”, Acta Math. 13 (1890) 1270.Google Scholar
[13]Smale, S., “Diffeomorphisms with many periodic points”, in Differential and combinatorial topology (ed. Cairns, S.S.), (Princeton University Press, Princeton, 1963) 6380.Google Scholar
[14]Smale, S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc. 73 (1967) 747817.CrossRefGoogle Scholar
[15]Wielinga, B. and Milbum, G. J., “Quantum tunneling in a Kerr medium with parametric pumping”, Phys. Rev. A 48 (1993) 24942496.CrossRefGoogle Scholar
[16]Wiggins, S., Introduction to applied nonlinear dynamical systems and chaos (Springer-Verlag, New York, 1990).CrossRefGoogle Scholar