Skip to main content Accessibility help
×
×
Home

COMBINED NATURAL CONVECTION COOLING OF A DRINK CAN

  • S. JIRACHEEWANUN (a1) (a2), S. W. ARMFIELD (a1) and M. BEHNIA (a1)

Abstract

We investigate natural convection cooling of the fluid in a drink can placed in a refrigerator by simulating the full combined boundary layer system on the can wall. The cylindrical can is filled with water at initial nondimensional temperature 0, and located within a larger cylindrical container filled with air at initial temperature −1. The outer container walls are maintained at constant temperature −1. Initially both fluids are at rest. Two configurations are examined: the first has the inner can placed vertically in the middle of the outer container with no contact with the outer container walls, and the second has the inner can placed vertically at the bottom of the outer container. The results are compared to those obtained by assuming that the inner can walls are maintained at a constant temperature, showing similar basic flow features and scaling relations, but with very different proportionality constants.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      COMBINED NATURAL CONVECTION COOLING OF A DRINK CAN
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      COMBINED NATURAL CONVECTION COOLING OF A DRINK CAN
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      COMBINED NATURAL CONVECTION COOLING OF A DRINK CAN
      Available formats
      ×

Copyright

Corresponding author

For correspondence; e-mail: sujin.jir@kmutt.ac.th

References

Hide All
[1]Datta, A. K. and Teixeira, A. A., “Numerically predicted transient temperature and velocity profiles during natural convection heating of canned liquid food”, J. Food Sci. 53 (1988) 191195.
[2]Evans, L. B., Reid, R. C. and Drake, E. M., “Transient natural convection in a vertical cylinder”, AIChE J. 14 (1968) 251259.
[3]Gustavsen, A., Griffith, B. T. and Arasteh, D., “Natural convection effects in three-dimensional window frames with internal cavities”, ASHRAE Trans. 107 (2001) 527537.
[4]Hyun, J. M., “Transient process of thermally stratifying an initially homogeneous fluid in an enclosure”, Int. J. Heat Mass Transfer 27 (1984) 19361938.
[5]Kumar, A. and Bhattacharya, M., “Transient temperature and velocity profiles in a canned non-Newtonian liquid food during sterilization in a still-cook retort”, Int. J. Heat Mass Transfer 34 (1991) 10831096.
[6]Lin, W. and Armfield, S. W., “Direct simulation of natural convection cooling in a vertical circular cylinder”, Int. J. Heat Mass Transfer 42 (1999) 41174130.
[7]Lin, W. and Armfield, S. W., “Natural convection cooling of rectangular and cylindrical containers”, Int. J. Heat Mass Transfer 22 (2001) 7281.
[8]Lin, W. and Armfield, S. W., “Long-term behavior of cooling fluid in a vertical cylinder”, Int. J. Heat Mass Transfer 48 (2005) 5366.
[9]Patankar, S. V., Numerical heat transfer and fluid flow (Hemisphere, Washington, DC, 1980).
[10]Patterson, J. C. and Armfield, S. W., “Transient features of natural convection in a cavity”, J. Fluid Mech. 219 (1990) 469497.
[11]Patterson, J. C. and Imberger, J., “Unsteady natural convection in a rectangular cavity”, J. Fluid Mech. 100 (1980) 6586.
[12]Peyret, R., Handbook of computational fluid mechanics (Academic Press, London, 1996).
[13]Polezhaev, V. I. and Cherkasov, S. G., “Unsteady thermal convection in a cylindrical vessel heated from the side”, Fluid Dyn. 18 (1983) 620629.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The ANZIAM Journal
  • ISSN: 1446-1811
  • EISSN: 1446-8735
  • URL: /core/journals/anziam-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed