Skip to main content
×
×
Home

COMPLEX DEMODULATION: A NOVEL TIME SERIES METHOD FOR ANALYSING SEASONAL INFECTIOUS DISEASES

  • A. B. HOGAN (a1), K. GLASS (a1) and R. S. ANDERSSEN (a2)
Abstract

Understanding how seasonal patterns change from year to year is important for the management of infectious disease epidemics. Here, we present a mathematical formalization of the application of complex demodulation, which has previously only been applied in an exploratory manner in the context of infectious diseases. This method extracts the changing amplitude and phase from seasonal data, allowing comparisons between the size and timing of yearly epidemics. We first validate the method using synthetic data that displays the key features of epidemic data. In particular, we analyse both annual and biennial synthetic data, and explore the effect of delayed epidemics on the extracted amplitude and phase. We then demonstrate the usefulness of complex demodulation using national notification data for influenza in Australia. This method clearly highlights the higher number of notifications and the early peak of the influenza pandemic in 2009. We also identify that epidemics that peaked later than usual generally followed larger epidemics and involved fewer overall notifications. Our analysis establishes a role for complex demodulation in the study of seasonal epidemiological events.

Copyright
Corresponding author
alexandra.hogan@anu.edu.au
References
Hide All
[1] Australian Government Department of Health, “Number of notifications of Influenza (laboratory confirmed), Australia, 2016”, http://www9.health.gov.au/cda/source/cda-index.cfm.
[2] Bloomfield, P., Fourier analysis of time series: An introduction (Wiley, New York, 2000).
[3] Cazelles, B., Cazelles, K. and Chavez, M., “Wavelet analysis in ecology and epidemiology: impact of statistical tests”, J. R. Soc. Interface 11 (2014) 110; doi:10.1098/rsif.2013.0585.
[4] Finkenstädt, B. and Grenfell, B., “Empirical determinants of measles metapopulation dynamics in England and Wales”, Proc. R. Soc. Lond. B 265 (1998) 211220; doi:10.1098/rspb.1998.0284.
[5] Fisman, D. N., “Seasonality of infectious diseases”, Ann. Rev. Pub. Health 28 (2007) 127143; doi:10.1146/annurev.publhealth.28.021406.14412.
[6] Grassly, N. C. and Fraser, C., “Seasonal infectious disease epidemiology”, Proc. R. Soc. B 273 (2006) 25412550; doi:10.1098/rspb.2006.3604.
[7] Grenfell, B. T., Bjørnstad, O. N. and Kappey, J., “Travelling waves and spatial hierarchies in measles epidemics”, Nature 414 (2001) 716723; doi:10.1038/414716a.
[8] Hao, Y.-L., Ueda, Y. and Ishii, N., “Improved procedure of complex demodulation and an application to frequency analysis of sleep spindles in EEG”, Med. Biol. Eng. Comput. 30 (1992) 406412; doi:10.1007/BF02446168.
[9] Hayano, J., Taylor, J. A., Yamada, A., Mukai, S., Hori, R., Asakawa, T., Yokoyama, K., Watanabe, Y., Takata, K. and Fujinami, T., “Continuous assessment of hemodynamic control by complex demodulation of cardiovascular variability”, Am. J. Physiol. 264 (1993) H1229–H1238; http://ajpheart.physiology.org/content/264/4/H1229.long.
[10] Hogan, A. B., Anderssen, R. S., Davis, S., Moore, H. C., Lim, F. J., Fathima, P. and Glass, K., “Time series analysis of RSV and bronchiolitis seasonality in temperate and tropical Western Australia”, Epidemics 16 (2016) 49–55; doi.10.1016/j.epidem.2016.05.001.
[11] Kingan, P. A., Bloomfield, P. and Anderssen, R. S., “Phase drift and coherence in geomagnetic data during a magnetic storm (Dst)”, J. Geomagn. Geoelectr. 32 (1980) 5765; doi:10.5636/jgg.32.57.
[12] Kondo, H., Ozone, M., Ohki, N., Sagawa, Y., Yamamichi, K., Fukuju, M., Yoshida, T., Nishi, C., Kawasaki, A., Mori, K., Kanbayashi, T., Izumi, M., Hishikawa, Y., Nishino, S. and Shimizu, T., “Association between heart rate variability, blood pressure and autonomic activity in cyclic alternating pattern during sleep”, Sleep 37 (2014) 187194; doi:10.5665/sleep.3334.
[13] Lofgren, E., Fefferman, N. H., Naumov, Y. N., Gorski, J. and Naumova, E. N., “Influenza seasonality: underlying causes and modeling theories”, J. Virol. 81 (2007); doi:10.1128/JVI.01680-06.
[14] Nader, I. W., Pietschnig, J., Niederkrotenthaler, T., Kapusta, N. D., Sonneck, G. and Voracek, M., “Suicide seasonality: complex demodulation as a novel approach in epidemiologic analysis”, PLoS ONE 6 (2011) e17413; doi:10.1371/journal.pone.0017413.
[15] Pitzer, V. E., Viboud, C., Alonso, W. J., Wilcox, T., Metcalf, C. J., Steiner, C. A., Haynes, A. K. and Grenfell, B. T., “Environmental drivers of the spatiotemporal dynamics of respiratory syncytial virus in the United States”, PLoS Pathog. 11 (2015) e1004591; doi:10.1371/journal.ppat.1004591.
[16] Priestley, M. B., “Wavelets and time-dependent spectral analysis”, J. Time Series Anal. 17 (1996) 85103; doi:10.1111/j.1467-9892.1996.tb00266.x.
[17] Sasai, T., Matsuura, M. and Inoue, Y., “Change in heart rate variability precedes the occurrence of periodic leg movements during sleep: an observational study”, BMC Neurol. 13 (2013);doi:10.1186/1471-2377-13-139.
[18] Thomas, J. B., An introduction to statistical communication theory (Wiley, New York, 1969).
[19] Viboud, C., Alonso, W. J. and Simonsen, L., “Influenza in tropical regions”, PLoS Med. 3 (2006) 468471; doi:10.1371/journal.pmed.0030089.
[20] Yasuma, F. and Hayano, J., “Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm?”, Chest 125 (2004) 683690; doi:10.1378/chest.125.2.683.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The ANZIAM Journal
  • ISSN: 1446-1811
  • EISSN: 1446-8735
  • URL: /core/journals/anziam-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 253 *
Loading metrics...

* Views captured on Cambridge Core between 21st April 2017 - 19th June 2018. This data will be updated every 24 hours.