Skip to main content
×
×
Home

Discrete equations corresponding to fourth-order differential equations of the P2 and K2 hierarchies

  • N. A. Kudryashov (a1) and M. B. Soukharev (a1)
Abstract

Using the Bäcklund transformations for the solutions of fourth-order differential equations of the P2 and K2 hierarchies, corresponding discrete equations are found.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Discrete equations corresponding to fourth-order differential equations of the P2 and K2 hierarchies
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Discrete equations corresponding to fourth-order differential equations of the P2 and K2 hierarchies
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Discrete equations corresponding to fourth-order differential equations of the P2 and K2 hierarchies
      Available formats
      ×
Copyright
References
Hide All
[1]Airault, H., “Rational solutions of Painlevé equations”, Stud. Appl. Math. 61 (1979) 3153.
[2]Boiti, M. and Pempinelli, F., “Similarity solutions of the Korteweg-de Vries equation”, Nuovo Cimento Soc. Ital. Fis.B 51 (1979) 7078.
[3]Caudrey, P. J., Dodd, R. K. and Gibbon, J. D., “A new hierarchy of Korteweg-de Vries equations”, Proc. Roy. Soc. LondonA 351 (1976) 407422.
[4]Clarkson, P., Mansfield, E. L. and Webster, H. N., “On the relation between discrete and continuous Painlevé equations”, Theoret. and Math. Phys. 122 (2000) 116.
[5]Dodd, R. K. and Gibbon, J. D., “The prolongation structure of a higher order Korteweg-de Vries equation”, Proc. Roy. Soc. LondonA 358 (1978) 287296.
[6]Flaschka, H. and Newell, A. C., “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys. 76 (1980) 65116.
[7]Fokas, A. S., Grammaticos, B. and Ramani, A., “From continuous to discrete Painlevé equations”, J. Math. Anal. Appl. 180(1993) 342360.
[8]Gordoa, P. R., Joshi, N. and Pickering, A., “Mappings preserving locations of movable poles: a new extension of the truncation method to ordinary differential equations”, Nonlinearity 12 (1999) 9551008.
[9]Grammaticos, B., Nijhoff, F. W. and Ramani, A., “Discrete Painlevé equations”, in The Painlevé Property. One century later (ed. Conte, R.), CRM Series in Math. Phys., (Springer, New York, 1999) 413516.
[10]Grammaticos, B. and Ramani, A., “From continuous Painlevé IV to the asymmetric discrete Painlevé I”, J. Phys.A 31 (1998) 57875798.
[11]Gromak, V. I., “Nonlinear evolution equations and equations of p type”, Differential equations 20 (1984) 20422048, (Russian).
[12]Gromak, V. I. and Lukashevich, N. A., Analytical Properties of Painlevé equations (Izdat. Universitetskoe, Minsk, 1990).
[13]Gross, D. J. and Migdal, A. A., “Nonperturbative two-dimensional quantum gravity”, Phys. Rev. Lett. 64 (1990) 127130.
[14]Gross, D. J. and Migdal, A. A., “A nonperturbative treatment of two-dimensional quantum gravity”, Nuclear Phys.B 340 (1990) 333365
[15]Hone, A. N. W., “Non-autonomous Hénon-Heils systems”, PhysicaD 118 (1998) 126.
[16]Kudryashov, N. A., “The first and the second Painlevé equations of higher order and some relations between them”, Phys. Lett.A 224 (1997) 353360.
[17]Kudryashov, N. A., “On new transcendents defined by nonlinear ordinary differential equations”, J. Phys. A.: Math. Gen. 31(1998) L129–L137.
[18]Kudryashov, N. A., “Transcendents defined by nonlinear fourth-order ordinary differential equations”, J. Phys. A.: Math. Gen. 32 (1999) 9991013.
[19]Kudryashov, N. A., “Two hierarchies of ordinary differential equations and their properties”, Phys. Lett.A 252 (1999) 173179.
[20]Kudryashov, N. A., “Fourth-order nonlinear differential equations with solutions in the form of transcendents”, Theoret. and Math. Phys. 122 (2000) 5871.
[21]Kudryashov, N. A. and Soukharev, M. B., “Uniformization and transcendence of solutions for the first and second Painlevé hierarchies”, Phys. Lett.A 237 (1998) 206216.
[22]Kupershmidt, B. and Wilson, G., “Modifying Lax equations and the second Hamiltonian structure”, Invent. Math. 62 (1981) 403436.
[23]Lukashevich, N. A., “On the theory of the second Painlevé equation”, Differential equations 7 (1971) 11241125.
[24]Nijhoff, F. W. and Papageorgiou, V. G., “Similarity reductions of integrable lattices and discrete analogues of the Painlevé II equation”, Phys. Lett.A 153 (1991) 337344.
[25]Nijhoff, F. W., Satsuma, J., Kajiwara, K., Grammaticos, B. and Ramani, A., “A study of the alternate discrete Painlevé II equation”, Inverse Problems 12 (1996) 697716.
[26]Quispel, G. R. W., Roberts, J. A. G. and Thompson, C. J., “Integrable mappings and soliton equations”, Phys. Lett.A 126 (1988) 419421.
[27]Veselov, A. P., “Integrable mappings”, Russian Math. Surveys 46 (1991) 345.
[28]Weiss, J., “On classes of integrable systems and the Painlevé property”, J. Math. Phys. 25 (1984) 1324.
[29]Weiss, J., “Bäcklund transformation and the Painlevé property”, J. Math. Phys. 27 (1986) 12931305.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The ANZIAM Journal
  • ISSN: 1446-1811
  • EISSN: 1446-8735
  • URL: /core/journals/anziam-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed