Skip to main content
×
×
Home

DOUGLAS–RACHFORD FEASIBILITY METHODS FOR MATRIX COMPLETION PROBLEMS

  • FRANCISCO J. ARAGÓN ARTACHO (a1) (a2), JONATHAN M. BORWEIN (a3) and MATTHEW K. TAM (a3)
Abstract

In this paper, we give general recommendations for successful application of the Douglas–Rachford reflection method to convex and nonconvex real matrix completion problems. These guidelines are demonstrated by various illustrative examples.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      DOUGLAS–RACHFORD FEASIBILITY METHODS FOR MATRIX COMPLETION PROBLEMS
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      DOUGLAS–RACHFORD FEASIBILITY METHODS FOR MATRIX COMPLETION PROBLEMS
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      DOUGLAS–RACHFORD FEASIBILITY METHODS FOR MATRIX COMPLETION PROBLEMS
      Available formats
      ×
Copyright
Corresponding author
matthew.k.tam@gmail.com
References
Hide All
[1]Ammar, G., Benner, P. and Mehrmann, V., “A multishift algorithm for the numerical solution of algebraic Riccati equations”, Electron. Trans. Numer. Anal. 1 (1993) 3348.
[2]Aragón Artacho, F. J. and Borwein, J. M., “Global convergence of a non-convex Douglas–Rachford iteration”, J. Global Optim. 57 (2013) 753769; doi:10.1007/s10898-012-9958-4.
[3]Aragón Artacho, F. J., Borwein, J. M. and Tam, M. K., “Recent results on Douglas–Rachford method for combinatorial optimization problems”, J. Optim. Theory Appl. (2013) ;doi:10.1007/s10957-013-0488-0.
[4]Bačák, M., Searston, M. I. and Sims, I. B., “Alternating projections in CAT(0) spaces”, J. Math. Anal. Appl. 385 (2012) 599607.
[5]Bauschke, H. H. and Borwein, J. M., “On the convergence of von Neumann’s alternating projection algorithm for two sets”, Set-Valued Anal. 1 (1993) 185212; doi:10.1007/BF01027691.
[6]Bauschke, H. H. and Borwein, J. M., “Dykstra’s alternating projection algorithm for two sets”, J. Approx. Theory 79 (1994) 418443; doi:10.1006/jath.1994.1136.
[7]Bauschke, H. H. and Borwein, J. M., “On projection algorithms for solving convex feasibility problems”, SIAM Rev. 38 (1996) 367426; doi:10.1137/S0036144593251710.
[8]Bauschke, H. H., Borwein, J. M. and Lewis, A., “The method of cyclic projections for closed convex sets in Hilbert space”, Contemp. Math. 204 (1997) 138; doi:10.1090/conm/204/02620.
[9]Bauschke, H. H., Combettes, P. L. and Luke, D. R., “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization”, J. Opt. Soc. Amer. A 19 (2002) 13341345 ;doi:10.1364/JOSAA.19.001334.
[10]Bauschke, H. H., Combettes, P. L. and Luke, D. R., “Hybrid projection–reflection method for phased retrieval”, J. Opt. Soc. Amer. A 20 (2003) 10251034; doi:10.1364/JOSAA.20.001025.
[11]Bauschke, H. H., Combettes, P. L. and Luke, D. R., “Finding best approximation pairs relative to two closed convex sets in Hilbert space”, J. Approx. Theory 127 (2004) 178192 ;doi:10.1016/j.jat.2004.02.006.
[12]Birgin, E. G. and Raydan, M., “Robust stopping criteria for Dykstra’s algorithm”, SIAM J. Sci. Comput. 26 (2005) 14051414; doi:10.1137/03060062X.
[13]Borwein, J. M. and Lewis, A. S., Convex analysis and nonlinear optimization (Springer, New York, 2006).
[14]Borwein, J. M. and Luke, D. R., “Entropic regularization of the function”, in: Fixed-point algorithms for inverse problems in science and engineering (Springer, New York, 2011), 6592.
[15]Borwein, J. M. and Sims, B., “The Douglas–Rachford algorithm in the absence of convexity”, in: Fixed-point algorithms for inverse problems in science and engineering (Springer, New York, 2011), 93109.
[16]Borwein, J. M. and Tam, M. K., “A cyclic Douglas–Rachford iteration scheme”, J. Optim. Theory Appl. 160 (2014) 129; doi:10.1007/s10957-013-0381-x.
[17]Boyle, J. and Dykstra, R., “A method for finding projections onto the intersection of convex sets in Hilbert spaces”, Lecture Notes in Statist. 37 (1986) 2847; doi:10.1007/978-1-4613-9940-7_3.
[18]Cai, J. F., Candès, E. J. and Shen, Z., “A singular value thresholding algorithm for matrix completion”, SIAM J. Optim. 20 (2010) 717772; doi:10.1137/080738970.
[19]Candès, E. J. and Recht, B., “Exact matrix completion via convex optimization”, Found. Comput. Math. 9 (2009) 717772; doi:10.1007/s10208-009-9045-5.
[20]Chen, Y. and Ye, X., “Projection onto a simplex”, arXiv:1101.6081v2, 2011.
[21]Dattorro, J., Convex optimization and Euclidean distance geometry (Meboo Publishing, California, 2013).
[22]Drineas, P., Javed, A., Magdon-Ismail, M., Pandurangant, G., Virrankoski, R. and Savvides, A., “Distance matrix reconstruction from incomplete distance information for sensor network localization”, Proc. IEEE Int. Conf. Sensor, Mesh and Ad Hoc Communications and Networks (SECON’06), 2006, 536–544; doi:10.1109/SAHCN.2006.288510.
[23]Escalante, R. and Raydan, M., Alternating Projection Methods (SIAM, Philadelphia, 2011) ;doi:10.1137/19781611971941.
[24]Fabry-Asztalos, L., Lorentz, I. and Andonie, R., “Molecular distance geometry optimization using geometric build-up and evolutionary techniques on GPU”, Comput. Intell. Bioinform. Comput. Biol. (2012) 321328; doi:10.1109/CIBCB.2012.6217247.
[25]Gaffke, N. and Mathar, R., “A cyclic projection algorithm via duality”, Metrika 36 (1989) 2954 ;doi:10.1007/BF02614077.
[26]Gholami, M. R., Tetruashvili, L., Strm, E. G. and Censor, Y., “Cooperative wireless sensor network positioning via implicit convex feasibility”, IEEE Trans. Signal Process. 61 (2013) 58305840 ;doi:10.1109/TSP.2013.2279770.
[27]Glunt, W., Hayden, T. L., Hong, S. and Wells, J., “An alternating projection algorithm for computing the nearest Euclidean distance matrix”, SIAM J. Matrix Anal. Appl. 11 (1990) 589600 ;doi:10.1137/0611042.
[28]Hayden, T. L. and Wells, J., “Approximation by matrices positive semidefinite on a subspace”, Linear Algebra Appl. 109 (1988) 115130; doi:10.1016/0024-3795(88)90202-9.
[29]Hesse, R. and Luke, D. R., “Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems”, SIAM J. Optim. 23 (2013) 23972419 ;doi:10.1137/120902653.
[30]Higham, N. J., “Computing the polar decomposition—with applications”, SIAM J. Sci. Stat. Comput. 7 (1986) 11601174; doi:10.1137/0907079.
[31]Hjørungnes, A., Complex-Valued Matrix Derivatives: with Applications in Signal Processing and Communications (Cambridge University Press, New York, 2011) ;doi:10.1017/CBO9780511921490.
[32]Horadam, K. J., Hadamard Matrices and their Applications (Princeton University Press, New Jersey, 2007).
[33]Horn, R. A. and Johnson, C. R., Matrix Analysis (Cambridge University Press, New York, 1985) ;doi:101017/CBO9780511810817.
[34]Johnson, C. R., “Matrix completion problems: a survey”, Proc. Sympos. Appl. Math. 40 (1990) 171198; doi:10.1090/psapm/040/1059486.
[35]Kirslock, N. and Wolkowicz, H., “Explicit sensor network localization using semidefinite representations and facial reductions”, SIAM J. Optim. 20 (2010) 26792708.
[36]Koukouvinos, C. and Stylianou, S., “On skew-Hadamard matrices”, Discrete Math. 309 (2008) 27232731; doi:10.1016/j.disc.2006.06.037.
[37]Laurent, M., “Matrix completion problems”, Encyclopedia Optim. 271 (2001) 221229 ;doi:10.1007/0-306-48332-7_271.
[38]Leung, K. H. and Schmidt, B., “New restrictions on possible order of circulant Hadamard matrices”, Des. Codes Cryptogr. 64 (2012) 143151; doi:10.1007/s10623-011-9493-1.
[39]McKay, B. D., “Hadamard equivalence via graph isomorphism”, Discrete Math. 27 (1979) 213214; doi:10.1016/0012-365X(79)90113-4.
[40]Piantadosi, J., Howlett, P. and Borwein, J. M., “Modelling and simulation of seasonal rainfall using the principle of maximum entropy”, Entropy 16 (2014) 747769; doi:10.3390/e16020747.
[41]Schoenberg, I. J., “Remarks to Maurice Fréchet’s article ‘Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert’”, Ann. of Math. (2) 36 (1935) 724732.
[42]Schönemann, P. H., “A generalized solution to the orthogonal Procrustes problem”, Psychometrika 31 (1966) 110; doi:10.1007/BF02289451.
[43]Takouda, P. L., “Un probléme d’approximation matricielle: quelle est la matrice bistochastique la plus proche d’une matrice donnée?”, RAIRO Oper. Res. 39 (2005) 3554.
[44]Yuen, A. K., Lafon, O., Charpentier, O. T., Roy, M., Brunet, F., Berthault, P., Sakellariou, D., Robert, B., Rimsky, S., Pillon, F., Cintrat, J. C. and Rousseau, B., “Measurement of long-range interatomic distances by solid-state tritium-NMR spectroscopy”, J. Amer. Chem. Soc. 132 (2010) 17341735; doi:10.1021/ja908915v.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The ANZIAM Journal
  • ISSN: 1446-1811
  • EISSN: 1446-8735
  • URL: /core/journals/anziam-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed