Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T00:32:18.561Z Has data issue: false hasContentIssue false

Guide expansions for the recursive parametric solution of polynomial dynamical systems

Published online by Cambridge University Press:  17 February 2009

G. F. D. Duff
Affiliation:
deceased, formerly of the Department of Mathematics, University of Toronto.
R. B. Leipnik
Affiliation:
Mathematics Department, University of California, Santa Barbara, CA 93106–3080, USA; e-mail: leipnik@math.ucsb.edu.
C. E. M. Pearce
Affiliation:
School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia; e-mail: charles.pearce@adelaide.edu.au.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recursive parametric series solutions are developed for polynomial ODE systems, based on expanding the system components in series of a form studied by Weiss. Individual terms involve first-order driven linear ODE systems with variable coefficients. We consider Lotka-Volterra systems as an example.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Cariello, F. and Tabor, M., “Singularities and symmetries in nonlinear evolution equations”, in Painlevé Transcendents (eds. Levi, D. and Winternitz, P.), (Plenum Press, New York, 1992) 315343.Google Scholar
[2]Cole, J. D., “On a quasi-linear parabolic equation”, Quart. J. Appl. Math. 9 (1951) 225236.CrossRefGoogle Scholar
[3]Duff, G. F. D., “Limit cycles and rotated vector fields”, Ann. Math. 57 (1953) 1531.Google Scholar
[4]Duff, G. F. D. and Leipnik, R. B., “Explicit general series solution for Euler and Navier-Stokes equations”, Int. J. Pure Appl. Math. 24 (2005) 211263.Google Scholar
[5]Hartman, P., Ordinary Differential Equations (Wiley, New York, 1964).Google Scholar
[6]Hopf, E., “The partial differential equation ut + uux = μuxx”, Comm. Pure Appl. Mech. 3 (1950) 201230.Google Scholar
[7]Leipnik, R. B., “A canonical form and solution for the matrix Riccati differential equation”, J. Austral. Math. Soc. Ser. B 26 (1985) 355361.CrossRefGoogle Scholar
[8]Leipnik, R. B., “Exact solutions of the Navier-Stokes equation by recursive series of diffusive quotients”. C. R. Math. Rep. Acad. Sci. canada 18 (1996) 211216.Google Scholar
[9]Osgood, O., “Beweis der Existenze einer Lösung der Differentialgleichung dy/dx = f(x, y) ohne Hinzunahme der Cauchy-Lipschitzsen Bedingung”, Monatschefte Math. Physics 9 (1898) 331345.Google Scholar
[10]Poincaré, H., “Sur les équations de la dynamique et le problème des trois corps”, Acta Mathematica 13 (1890) 1270.Google Scholar
[11]Takens, F., “Forced oscillations and bifurcations”, Comm. Math. Rijksuniversitat Utrecht 3 (1974) 159.Google Scholar
[12]Ward, R. S., “Multidimensional integrable systems”, in Field Theory, Quantum Gravity and Strings II (eds. de Vega, H. J. and Sánchez, N.), Lecture Notes in Physics 280, (1986) 106116.CrossRefGoogle Scholar
[13]Weiss, J., Tabor, M. and Carnevale, G., “The Painlevé property for partial differential equations”, J. Math. Phys. 24 (1983) 522526.Google Scholar
[14]Whittaker, E. T. and Watson, G. N., A Course in Modern Analysis (Cambridge University Press, Cambridge, 1952).Google Scholar
[15]Yoshida, K., Lectures on Differential and Integral Equations (Wiley, New York, 1960).Google Scholar