Skip to main content
×
×
Home

ISOLATED SCATTERING NUMBER OF SPLIT GRAPHS AND GRAPH PRODUCTS

  • FENGWEI LI (a1), QINGFANG YE (a1) and XIAOYAN ZHANG (a2)
Abstract

Computer or communication networks are so designed that they do not easily get disrupted under external attack. Moreover, they are easily reconstructed when they do get disrupted. These desirable properties of networks can be measured by various parameters, such as connectivity, toughness and scattering number. Among these parameters, the isolated scattering number is a comparatively better parameter to measure the vulnerability of networks. In this paper we first prove that for split graphs, this number can be computed in polynomial time. Then we determine the isolated scattering number of the Cartesian product and the Kronecker product of special graphs and special permutation graphs.

Copyright
Corresponding author
fengwei.li@hotmail.com
References
Hide All
[1] Alon, N. and Lubetzky, E., “Independent set in tensor graph powers”, J. Graph Theory 54 (2007) 7387; doi:10.1002/jgt.20194.
[2] Arika, T. and Shibata, Y., “Optimal design of diagnosable systems on networks constructed by graph operations”, Electron. Commun. Japan 85 (2002) 19; doi:10.1002/ecjc.1089.
[3] Barefoot, C. A., Entringer, R. and Swart, H., “Vulnerability in graphs – A comparative survey”, J. Combin. Math. Combin. Comput. 1 (1987) 1222; https://www.researchgate.net/publication/266002676.
[4] Bondy, J. A. and Murty, U. S. R., Graph theory with applications (North-Holland, New York, 1976); http://101.96.10.59/www.iro.umontreal.ca/∼hahn/IFT3545/GTWA.pdf.
[5] Bres̆ar, B., Imrich, W., Klavz̆ar, S. and Zmazek, B., “Hypercubes as direct products”, SIAM J. Discrete Math. 18 (2005) 778786; doi:10.1137/S0895480103438358.
[6] Chartrand, G. and Harary, F., “Planar permutation graphs”, Ann. Inst. H. Poincaré Sec. B (N.S.) 3 (1967) 433438; https://eudml.org/doc/76875.
[7] Chvátal, V., “Tough graphs and Hamiltonian circuits”, Discrete Math. 5 (1973) 215228; doi:10.1016/j.disc.2006.03.011.
[8] Cozzens, M., Moazzami, D. and Stueckle, S., “The tenacity of a graph”, in: Proceedings of 7th International Conference on the Theory and Applications of Graphs (Wiley, New York, 1995) 11111122; http://101.96.10.59/www.iro.umontreal.ca/∼hahn/IFT3545/GTWA.pdf.
[9] Foldes, S. and Hammer, P. L., “Split graphs having Dilworth number two”, Can. J. Math. 29 (1977) 666672; doi:10.4153/CJM-1977-069-1.
[10] Ghozati, S. A., “A finite automata approach to modeling the cross product of interconnection networks”, Math. Comput. Modelling 30 (1999) 185200; doi:10.1016/S0895-7177(99)00173-9.
[11] Grötschel, M., Lovász, L. and Schrijver, A., Geometric algorithms and combinatorial optimization (Springer, Berlin, 1988); http://www.apress.com/cn/book/9783642978814#otherversion=9783642978838.
[12] Jung, H. A., “On maximal circuits in finite graphs”, Ann. Discrete Math. 3 (1978) 129144; doi:10.1016/S0167-5060(08)70503-X.
[13] Lammprey, R. H. and Barnes, B. H., “Products of graphs and applications”, Model. Simul. 5 (1974) 11191123; http://www.ams.org/mathscinet-getitem?mr=449900.
[14] Li, F. W., “Isolated rupture degree of trees and gear graphs”, Neural Network World 25 (2015) 287300; doi:10.14311/NNW.2015.25.015.
[15] Li, F. W., “On isolated rupture degree of graphs”, Util. Math. 96 (2015) 3347;https://www.researchgate.net/publication/292526797.
[16] Li, Y. K., Zhang, S. G. and Li, X. L., “Rupture degree of graphs”, Int. J. Comput. Math. 82 (2005) 793803; doi:10.1080/00207160412331336062.
[17] Mamut, A. and Vumar, E., “Vertex vulnerability parameters of Kronecker products of complete graphs”, Inform. Process. Lett. 106 (2008) 258262; doi:10.1016/j.ipl.2007.12.002.
[18] Quinn, M. J., Parallel computing: theory and practice (McGraw-Hill, New York, 1994);http://dl.acm.org/citation.cfm?id=174770.
[19] Schrijver, A., “A combinatorial algorithm minimizing submodular functions in strongly polynomial time”, J. Combin. Theory Ser. B 80 (2000) 346355; doi:10.1006/jctb.2000.1989.
[20] Wang, S. Y., Yang, Y. X., Lin, S. W., Li, J. and Hu, Z. M., “The isolated scattering number of graphs”, Acta Math. Sinica 54 (2011) 861874; (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTotal-SXXB201105015.htm.
[21] Woeginger, G. J., “The toughness of split graphs”, Discrete Math. 190 (1998) 295297; doi:10.1016/S0012-365X(98)00156-3.
[22] Zhang, S. G., Li, X. L. and Han, X. L., “Computing the scattering number of graphs”, Int. J. Comput. Math. 79 (2002) 179187; doi:10.1080/00207160211919.
[23] Zhang, S. G., Zhang, Q. L. and Yang, H. W., “Vulnerability parameters of split graphs”, Int. J. Comput. Math. 85 (2008) 1923; doi:10.1080/00207160701365721.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The ANZIAM Journal
  • ISSN: 1446-1811
  • EISSN: 1446-8735
  • URL: /core/journals/anziam-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed