Skip to main content Accessibility help


  • LAWRENCE K. FORBES (a1), RHYS A. PAUL (a1), MICHAEL J. CHEN (a1) (a2) and DAVID E. HORSLEY (a1)


The Kelvin–Helmholtz flow is a shearing instability that occurs at the interface between two fluids moving with different speeds. Here, the two fluids are each of finite depth, but are highly viscous. Consequently, their motion is caused by the horizontal speeds of the two walls above and below each fluid layer. The motion of the fluids is assumed to be governed by the Stokes approximation for slow viscous flow, and the fluid motion is thus responsible for movement of the interface between them. A linearized solution is presented, from which the decay rate and the group speed of the wave system may be obtained. The nonlinear equations are solved using a novel spectral representation for the streamfunctions in each of the two fluid layers, and the exact boundary conditions are applied at the unknown interface location. Results are presented for the wave profiles, and the behaviour of the curvature of the interface is discussed. These results are compared to the Boussinesq–Stokes approximation which is also solved by a novel spectral technique, and agreement between the results supports the numerical calculations.


Corresponding author


Hide All
[1]Abramowitz, M. and Stegun, I. A. (eds), Handbook of mathematical functions (Dover, New York, 1972).
[2]Baker, G. R. and Pham, L. D., “A comparison of blob-methods for vortex sheet roll-up”, J. Fluid Mech. 547 (2006) 297316 doi:10.1017/S0022112005007305.
[3]Barnea, D. and Taitel, Y., “Kelvin–Helmholtz stability criteria for stratified flow: viscous versus non-viscous (inviscid) approaches”, Int. J. Multiphase Flow 19 (1993) 639649 doi:10.1016/0301-9322(93)90092-9.
[4]Batchelor, G. K., An introduction to fluid dynamics (Cambridge University Press, Cambridge, 1967).
[5]Chandrasekhar, S., Hydrodynamic and hydromagnetic stability (Dover, New York, 1981).
[6]Chen, M. J. and Forbes, L. K., “Accurate methods for computing inviscid and viscous Kelvin–Helmholtz instability”, J. Comput. Phys. 230 (2011) 14991515 doi:10.1016/
[7]Cowley, S. J., Baker, G. R. and Tanveer, S., “On the formation of Moore curvature singularities in vortex sheets”, J. Fluid Mech. 378 (1999) 233267 doi:10.1017/S0022112098003334.
[8]Drazin, P. G. and Reid, W. H., Hydrodynamic stability, 2nd edn (Cambridge University Press, Cambridge, 2004).
[9]Eggers, J. and Villermaux, E., “Physics of liquid jets”, Rep. Progr. Phys. 71 (2008) 179 doi:10.1088/0034-4885/71/3/036601.
[10]Faltinsen, O. and Timokha, A., “An adaptive multimodal approach to nonlinear sloshing in a rectangular tank”, J. Fluid Mech. 432 (2001) 167200
[11]Forbes, L. K., “The Rayleigh–Taylor instability for inviscid and viscous fluids”, J. Engrg. Math. 65 (2009) 273290 doi:10.1007/s10665-009-9288-9.
[12]Forbes, L. K., “How strain and spin may make a star bi-polar”, J. Fluid Mech. 746 (2014) 332367 doi:10.1017/jfm.2014.130.
[13]Forbes, L. K., Chen, M. J. and Trenham, C. E., “Computing unstable periodic waves at the interface of two inviscid fluids in uniform vertical flow”, J. Comput. Phys. 221 (2007) 269287 doi:10.1016/
[14]Forbes, L. K. and Cosgrove, J. M., “A line vortex in a two-fluid system”, J. Engrg. Math. 84 (2014) 181199 doi:10.1007/s10665-012-9606-5.
[15]Hamming, R. W., Numerical methods for scientists and engineers (McGraw-Hill, New York, 1973).
[16]Horsley, D. E. and Forbes, L. K., “A spectral method for Faraday waves in rectangular tanks”, J. Engrg. Math. 79 (2013) 1335 doi:10.1007/s10665-012-9562-0.
[17]Krasny, R., “Desingularization of periodic vortex sheet roll-up”, J. Comput. Phys. 65 (1986) 292313 doi:10.1016/0021-9991(86)90210-X.
[18]Kreyszig, E., Advanced engineering mathematics, 9th edn (Wiley, New York, 2006).
[19]Li, J., Renardy, Y. Y. and Renardy, M., “A numerical study of periodic disturbances on two-layer Couette flow”, Phys. Fluids 10 (1998) 30563071 doi:10.1063/1.869834.
[20]Moore, D. W., “Spontaneous appearance of a singularity in the shape of an evolving vortex sheet”, Proc. R. Soc. Lond. A 365 (1979) 105119 doi:10.1098/rspa.1979.0009.
[21]Ockendon, H. and Ockendon, J. R., Viscous flow (Cambridge University Press, Cambridge, 1995).
[22]Pozrikidis, C., “Instability of two-layer creeping flow in a channel with parallel-sided walls”, J. Fluid Mech. 351 (1997) 139165 doi:10.1017/S0022112097007052.
[23]Shadloo, M. S. and Yildiz, M., “Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics”, Internat. J. Numer. Methods Engrg. 87 (2011) 9881006 doi:10.1002/nme.3149.
[24]Siegel, M., “Cusp formation for time-evolving bubbles in two-dimensional Stokes flow”, J. Fluid Mech. 412 (2000) 227257 doi:10.1017/S002211200000834X.
[25]Tauber, W., Unverdi, S. O. and Tryggvason, G., “The nonlinear behavior of a sheared immiscible fluid interface”, Phys. Fluids 14 (2002) 28712885 doi:10.1063/1.1485763.
[26]Tryggvason, G., Dahm, W. J. A. and Sbeih, K., “Fine structure of vortex sheet rollup by viscous and inviscid simulation”, J. Fluids Engrg. 113 (1991) 3136 doi:10.1115/1.2926492.
[27]Van Dyke, M., An album of fluid motion (Parabolic Press, Stanford, CA, 1982).
[28]von Winckel, G., lgwt.m, at: MATLAB file exchange website (2004),
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed