Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T09:37:54.069Z Has data issue: false hasContentIssue false

A nonmonotone inexact Newton algorithm for nonlinear systems of equations

Published online by Cambridge University Press:  17 February 2009

Eric King-Wah Chu
Affiliation:
Mathematics Department, Monash University, Clayton 3168, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, an inexact Newton's method for nonlinear systems of equations is proposed. The method applies nonmonotone techniques and Newton's as well as inexact Newton's methods can be viewed as special cases of this new method. The method converges globally and quadratically. Some numerical experiments are reported for both standard test problems and an application in the computation of Hopf bifurcation points.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Andrew, A. L., Chu, K.-w. E. and Lancaster, P., “On numerical solution of nonlinear eigenvalue problems”, Applied mathematics report and preprints, no. 92/22, Mathematics Department, Monash University, 1992.Google Scholar
[2]Band, R. E. and Rose, D. J., “Global approximation Newton methods”, Numer. Math. 37 (1981) 279295.Google Scholar
[3]Bank, R. E. and Mittielmann, H. D., Stepsize selection in continuation procedures and damped Newton's method (1990) 6777.Google Scholar
[4]Brown, P. N. and Saad, Y., “Hybrid Krylov methods for nonlinear systems of equations”, SIAM J. Sci. Statist. Comput. 11 (1990) 450481.CrossRefGoogle Scholar
[5]Chu, K.-w. E., Govaerts, W. and Spence, A., “Matrices with rank deficiency two in eigenvalue problems and dynamical systems”, SIAM J. Numer. Anal, (to appear).Google Scholar
[6]Dembo, R. S., Eisenstant, S. C. and Stenhaug, T., “Inexact Newton methods”, SIAM J. Numer. Anal. 19 (1982) 400408.CrossRefGoogle Scholar
[7]Deng, N., Xiao, Y. and Zhou, F., “Nonmonotone curved search methods for unconstrained optimization”, Numer. mathematics: J. Chinese Universities, Ser. B 1 (1992), to appear.Google Scholar
[8]Deng, N., Xiao, Y. and Zhou, F., “Nonmonotone trust region algorithms”, J. Optim. Theory Appl. 76 (1993) 259285.CrossRefGoogle Scholar
[9]Griewank, A. and Raddien, G., “The calculation of Hopf bifurcation points by a direct method”, IMA J. Numer. Anal. 3 (1983) 295303.CrossRefGoogle Scholar
[10]Grippo, L., Lampariello, F. and Lucidi, S., “A nonmonotone line search technique for Newton's method”, SIAM J. Numer. Anal. 23 (1986) 707716.CrossRefGoogle Scholar
[11]Grippo, L., Lampariello, F. and Lucidi, S., “A truncated method with nonmonotone line search for unconstrained optimization”, J. Optim. Theory Appl. 64 (1989) 401419.CrossRefGoogle Scholar
[12]Grippo, L., Lampariello, F. and Lucidi, S., “A quasi-discrete Newton algorithm with a nonmonotone stabilization technique”, J. Optim. Theory Appl. 64 (1990) 495510.CrossRefGoogle Scholar
[13]Grippo, L., Lampariello, F. and Lucidi, S., “A class of nonmonotone stabilization methods in unconstrained optimization”, Numer. Math. 59 (1991) 779805.CrossRefGoogle Scholar
[14]The Mathworks Inc., MATLAB user's guide (The Mathworks Inc., South Natick, MA, 1989).Google Scholar
[15]Dennis, J. E. Jr. and Mei, H. H. W., “Two new unconstrained optimization algorithms which use function and gradient values”, J. Optim. Theory Appl. 28 (1979) 453482.CrossRefGoogle Scholar
[16]Dennis, J. E. Jr. and Schnabel, R. B., Numerical methods for unconstrained optimization and nonlinear equations (Prentice-Hall, Englewood Cliffs, NJ, 1983).Google Scholar
[17]Kubicek, M., “An algorithm for evaluation of complex bifurcation points”, SIAM J. Appl. Math. 38 (1980) 103106.CrossRefGoogle Scholar
[18]More, J. J., Garbow, B. S. and Hillstrom, K. E., “Testing unconstrained optimization”, ACM Trans. Math. Software 7 (1981) 1741.CrossRefGoogle Scholar
[19]Panier, E. R. and Tits, A. L., “Avoid the Maratos effect by means of a nonmonotone line search; I, general constrained problems”, SIAM J. Numer. Anal. 28 (1991) 11831195.CrossRefGoogle Scholar
[20]Roose, D., “An algorithm for the computation of Hopf bifurcation points in comparison with other methods”, J. Comput. Appl. Math. 13 (1985) 517529.CrossRefGoogle Scholar
[21]Roose, D. and Hlavacek, V., “A direct method for the computation of Hopf bifurcation points”, S1AM J. Appl. Math. 45 (1985) 879894.Google Scholar
[22]Saad, Y. and Schultz, H., “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Statist. Comput. 7 (1986) 856869.CrossRefGoogle Scholar
[23]Schittkowski, K., More test examples for nonlinear programming codes (Springer-Verlag, Berlin, 1987).CrossRefGoogle Scholar
[24]Xiao, Y. and Zhou, F., “Nonmonotone trust region methods with curvilinear path in unconstrained optimization”, Computing 48 (1992) 303317.CrossRefGoogle Scholar